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Abstract

We introduce a static analysis framework for detecting instances of security breaches in

infinite mobile and cryptographic systems specified using the languages of the π-calculus

and its cryptographic extension, the spi calculus. The framework is composed from three

components: First, standard denotational semantics of the π-calculus and the spi calculus

are constructed based on domain theory. The resulting model is sound and adequate with

respect to transitions in the operational semantics. The standard semantics is then extended

correctly to non-uniformly capture the property of term substitution, which occurs as a

result of communications and successful cryptographic operations. Finally, the non-standard

semantics is abstracted to operate over finite domains so as to ensure the termination of

the static analysis. The safety of the abstract semantics is proven with respect to the non-

standard semantics. The results of the abstract interpretation are then used to capture

breaches of the secrecy and authenticity properties in the analysed systems. Two initial

prototype implementations of the security analysis for the π-calculus and the spi calculus

are also included in the thesis.

The main contributions of this thesis are summarised by the following. In the area of

denotational semantics, the thesis introduces a domain-theoretic model for the spi calculus

that is sound and adequate with respect to transitions in the structural operational seman-

tics. In the area of static program analysis, the thesis utilises the denotational approach as

the basis for the construction of abstract interpretations for infinite systems modelled by

the π-calculus and the spi calculus. This facilitates the use of computationally significant

mathematical concepts like least fixed points and results in an analysis that is fully compo-

sitional. Also, the thesis demonstrates that the choice of the term-substitution property in

mobile and cryptographic programs is rich enough to capture breaches of security properties,

like process secrecy and authenticity. These properties are used to analyse a number of mo-

bile and cryptographic protocols, like the file transfer protocol and the Needham-Schroeder,

SPLICE/AS, Otway-Rees, Kerberos, Yahalom and Woo Lam authentication protocols.
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Chapter 1

Introduction

1.1 The Problem of Computer Security

The issue of security in computing systems developed as an independent research discipline

in the early 1970s, although much of the earlier work had been carried out as part of other

research areas, particularly in relation to operating systems and databases. Despite the fact

that many of the early papers in computer security are difficult to obtain nowadays, there are

some entities that maintain collections of such papers. One example is the comprehensive

collection provided by NISTs Computer Security Resource Center (CSRC)1.

The early forms of computer security were restricted to the protection of data and pro-

grams running on isolated monolithic mainframe machines or on limited multi-user or multi-

program systems. Such protection mainly consisted of access control and authorization

mechanisms and relied, to a large extent, on protecting the physical access to these ma-

chines. Later, the introduction and success of computer networking gave a new perspective

to computer security. Networks meant that users and machines could share information over

a wide range of distances. The implications soon became clear: data and files could be vul-

nerable to attacks from other users/programs not only within the machines themselves, but

also over the network. Cryptography was utilised as an effective solution to the protection

of data and programs from these new threats.

In the last decade or so, the issue of computer security has become even more intricate and

sophisticated with the advent of wide area distributed systems like the Internet, and dynamic

mobile technologies. Such advancements not only facilitated the integration of computers

into every day life activities, but also provided features like transparency, anonymity, and

1The collection is available at: http://csrc.nist.gov/publications/history/
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mobility, all of which opened the gates for new forms of computer and information attacks

to be launched. In almost every research area related to the modern technologies underlying

e-commerce, global communications and pervasive computing, the element of security is a

necessity for the protection of our identities, data and material property.

Nowadays, it is often a common practice to use credit cards to purchase goods and pay

for services online over the Internet. Taking this practice as an example, the security threats

posed are several: fraud resulting from compromising the secrecy of credit card information

by malicious attackers, the integrity of the data transmitted during a payment session, the

authenticity of the site offering goods or services, anonymity and non-repudiation issues re-

lated to transactions, etc. Cryptographic protocols have been devised to resolve the problems

of secrecy and authenticity by using secret-key cryptography and public-key infrastructure

to ensure that communications maintain certain levels of security requirements.

As a second example, consider the downloadable code fragments that often enter the

address space of computers connected to the Internet. Special treatment of mobile code

is necessary in order to avoid leaking private information to external sources as well as

damaging internal data. Therefore, safety measures like bounded sandboxes, which prevent

applets from accessing local file systems and initiating ad-hoc network connections, have

been devised.

All these new demands for computer security have prompted the task of designing and

implementing more robust systems that are inherently secure. An important aspect of this

task is program analysis, which helps the understanding of the way programs will behave

and their properties once executed. Broadly speaking, one may divide program analysis

into two categories: runtime and compile-time analysis. Runtime analysis relies on dynamic

techniques that gather information about programs during their execution or testing. This

information is then used to reason about the properties of a program and subsequently

will affect the way data and control flow in that program. In general, runtime analysis

has focused on traditional ad-hoc monitoring techniques used in performance monitoring,

distributed debugging, etc. and has not yet demonstrated much use of formal methods

techniques (except for a few examples like runtime type checking and program specification

guidance). On the other hand, compile-time analysis has benefited much from the use of

formal methods techniques, in particular model checking, theorem proving and abstract

interpretation. Unlike the runtime analysis, which has a real-time narrow view of a program

computation, a compile-time analysis is only applicable at the compilation stage and can

approximate properties about all the possible computations of that program.

The approach to the problem of detecting security threats in computer systems as con-
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tributed by this thesis involves the introduction of an abstract interpretation-based static

analysis framework for the verification of security-related properties of infinite mobile and

cryptographic systems whose meaning is defined by a denotational semantics. The frame-

work is general; it can be accommodated to different languages, properties and abstractions.

However, in our case, we target closed systems specified with the language of the π-calculus

and its cryptographic-extension, the spi calculus, and deal with open systems by modelling

the intruder within the specification. We capture the name-passing behaviour within mo-

bile systems and the term-passing and term-processing2 behaviours within cryptographic

protocols through the abstract interpretation of programs. This abstract interpretation is

non-uniform; the number of copies of each term appearing in the results of the interpretation

can be adjusted depending on the nature of properties sought. The information obtained

from the abstract interpretation is then used to further analyse these programs to detect

the presence of any secrecy or authenticity breaches.

In the rest of this introduction, we describe the basics underlying four main components

of our static analysis framework. These include mobile systems (and their security-related

extensions), denotational semantics, static program analysis, and computer security. Each

of these components constitutes a major area of research that overlaps with the other areas.

We only give a brief overview of each of these components in a manner that is specific to our

framework and avoid going into too much detail, referring enthusiastic readers to references

on each subject involved.

1.2 Mobile Systems

The word mobile in the real world is normally used to describe the state of any object,

location, condition etc. that is moving with respect to some reference. In the context

of computing systems, mobility may refer to the movement of communication channels,

code, or whole computing environments. For example, HTML links can be created, sent to

other entities and destroyed later. References to objects in object-oriented programming are

created and passed around as capabilities of communication. In Java, applet code embedded

in Web pages can be downloaded and executed dynamically at runtime by the host machine.

The movement of “intelligent” mobile agents constitutes a form of code and state mobility.

Finally, the emerging component-based technologies and pervasive/ubiquitous computing

are interesting examples of mobile computing environments.

2Term processing is the term we use to refer to the cryptographic operations performed by processes on

terms in the spi calculus.
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From a process algebraic point of view, there are two widely accepted definitions of

mobility [96]:

1. Link-based mobility.

The concept of link-based mobility states that the movement of a process among

other processes can in fact be described as the proliferation, change and extinction

of the communication channels linking that process to the rest. In other words, this

corresponds to the movement of links in the virtual space of linked processes. The basic

notion of communication here is that of process interaction, where processes interact

to exchange links. This induces the behaviour of message passing. The resulting

mobility is expressively powerful and can be used to encode the higher-order notion

of process-based mobility, in which whole processes (not just links) can move in the

virtual space of linked processes. The π-calculus [97, 96, 114] is among the most

authoritative models that embrace the link-based definition of mobility.

2. Location-based mobility.

Unlike the link-based definition of mobility, which describes a virtual movement of

links, the location-based definition relies on the physical aspect of mobility. According

to this definition, mobility is the movement of processes in the space of locations.

For example, the movement of a laptop from one local area network to another is

viewed as the movement of a computing process (the laptop) from one parent location

(first LAN) to another (second LAN). The best example of a formalism that adopts the

concept of location-based mobility is the Mobile Ambients calculus [38], which is mainly

influenced by Internet programming and the presence of administrative domains that

divide wide area networks in general.

By and large, the modelling of mobility in computing systems has benefited a good deal

from the body of theory that was developed earlier for the modelling of static concurrent and

distributed systems. Formalisms such as Petri nets [107], CSP [75] and CCS [93] provided

the necessary mature ground for the arrival of the first substantial theory of mobility; the

π-calculus. The development of the π-calculus was directly inspired by the calculus of [50],

where label-passing was added to the theory of CCS to model the dynamic configuration

of networks. In the π-calculus, the theory was further simplified by adopting the unique

notion of a name (hence identifying variables and constants). Names refer to channels

of communication and can be communicated over other names. The concept of mobility is

grasped by allowing processes to exchange names of channels, and hence modify the network

configuration dynamically.

4



The π-calculus is a highly expressive language that is also capable of encoding statically

distributed systems and functional programming (λ-calculus). The language is characterized

as being directly executable and has formed the basis for other programming languages like

Piccola [9], Join [64], Pict [108] and Nomadic Pict [132]. It has also provided the basis for

many extended models that are concerned with different aspects and properties of mobile

systems. The extension we are interested in is the spi calculus [5], which extends the language

of the π-calculus by the addition of cryptographic primitives like encryption/decryption and

digital signing/verification. Reasoning about the different properties of cryptographic pro-

tocols is based on a theory of testing-equivalence. Properties like privacy and authentication

are defined as equivalences in the presence of intruder processes.

The popularity of the π-calculus led to the development of the Mobile Ambients calculus

that adopts a different approach in the modelling of mobility. Unlike the location-transparent

π-calculus, the Mobile Ambients adopts the notion of an ambient as its main idea and it

is most suitable for the modelling of computing agents that can move from one location to

another. Ambients are bounded places where computations can take place. The boundary of

an ambient is significant to its movement, since it determines exactly what entity will move.

It is also significant from the security perspective as it acts as an access control mechanism

determining what boundaries can or cannot be crossed. Examples of ambients include a

virtual address space, a laptop, a Unix file system and a single Java object. Furthermore,

ambients may be nested within other ambients.

Amongst other formalisms, which adopt definitions of mobility that overlap definitions

(1) and (2) above and that have been shown to be interesting, is the seal calculus [129].

Seals are named locations that are passed around and can have portals opened for remote

communications occurring with the parent and child seals, while allowing for local commu-

nications to take place directly within the same seal. The seal calculus extends the polyadic

π-calculus [95], and in comparison to the Mobile Ambients calculus, it adopts an objective

movement of locations; movement is initiated by the environment surrounding a seal. The

Mobile Ambients calculus, on the other hand, adopts subjective mobility allowing ambients

to initiate the movement.

The seal calculus elegantly models Internet programming. It adheres to a number of

principles that are reminiscent of Internet-like programming. These include the distinction

between remote and local communications, locations, restricted connectivity and access

control. In particular, the modelling of security notions that rely on locations and scoping,

like the perfect firewall equation, is straightforward.

One of the interesting issues currently debated within the area of mobility formalisms
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and security is whether there is a need for combining location-based mobility languages, like

the Mobile Ambients and seal calculi, with cryptographic primitives in a similar manner to

the spi calculus. The analogy between the concepts of a mobile location and a ciphertext

encrypted with a symmetric key is prevalent. However, it is less obvious when dealing with

asymmetric-key cryptography and operations like hashing. Nonetheless, the modelling of

mechanisms, like remote communications (e.g. RPC and RMI), could well benefit from such

a combination.

In our static analysis framework, we adopt the π-calculus as the main specification lan-

guage for mobile systems. We also adopt its security extension, the spi calculus, for the spec-

ification of mobile systems enhanced with cryptography. This decision is motivated by two

reasons: first, the fact that both languages are more mature than any of the location-based

languages means that more theory is available. Second, there are very few cryptographic

extensions of the location-based languages [111], therefore, cryptographic protocols have not

been studied in light of such models. Nonetheless, extending the current framework to the

Mobile Ambients calculus and/or the seal calculus should benefit our cause and will provide

additional understanding of how security mechanisms, in general, behave in mobile systems.

1.3 Denotational Semantics

The denotational (also known as the mathematical) approach to the definition of the se-

mantics of programming languages was initiated by Christopher Strachey and instrumented

by Dana Scott in the late 1960s and early 1970s [118, 117, 123, 115, 122, 131]. The idea

suggested by Scott and Strachey was to develop a mathematical framework within which

the formal semantics of programming languages could be specified without the traditional

implementation-dependant problems associated with operational semantics and that would

rely on the rigor that mathematics offers. Indeed, this framework later became an inspiration

for computer language designers and implementers.

The basis of any denotational model is that syntactic phrases are realisations of abstract

mathematical objects. For example, in a calculator device, strings of digits are perceived

as abstract numerical ideas regardless of the format in which those digits are presented on

the screen. Another example is the functional view that programs stand for mathematical

functions, and the execution of a program, given some input data, resembles the application

of a function to its parameters.

In general, for any syntactically correct program, there exists a mathematical object

known as the denotation of that program that expresses the meaning of the program in a
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clear and non-circular (i.e. needless of further definitions) manner. Based on this, one may

divide a denotational model into three components:

1. Syntactic domains. These are the collection of entities that constitute the syntactical

representation of the language constructs and whose meaning is sought. Syntactic

domains include digits, numerals, expressions, instructions, phrases and programs.

The syntactic domains we adopt here are abstract [89], as opposed to the concrete

syntactic domains, which normally introduce unnecessary syntactic sugar useful only

for the parsing of programs and does not contribute to their meaning. Furthermore,

the syntactic notation we adopt is a version of the Backus-Naur Form (BNF) [17],

which describes context-free grammars. Classical readings on the subject of syntax

include [41, 16].

2. Semantic domains. These are collections of mathematical objects (denotations) that

convey the meaning of the syntactical entities. Elements of these objects usually have

some structure, like complete partial orders (CPOs), lattices or domains, whose algebra

is determined by domain theory. The semantic elements are usually classified as either

primitive or complex elements, where the bottom element in these domains often

denotes the undefined program. Primitive elements constitute the atomic semantic

elements whereas complex elements are necessary to convey more sophisticated ideas

that can be decomposed back to the primitive elements. For example, it is common

in the theory of the π-calculus to interpret parallelism in terms of the simpler notions

of input/output and non-determinism.

3. Semantic functions. These are special functions that map programs, phrases etc. from

their syntactic domains to their denotations in the semantic domains. Often, there

are certain requirements that need to be satisfied by semantic functions, for example,

being monotonic and continuous.

In general, a denotational semantics has to respect the principle of compositionality . Com-

positionality states that the meaning of a program can be defined in terms of the meanings

of its subprograms. A discussion on the principle of compositionality in the definition of

language semantics can be found in [125]. Also, the well known Pisa Notes3 on domains

compiled by Gordon Plotkin are a traditional reading in the subject of domain theory and

its application to semantics.

One of the main advantages that the denotational semantics approach introduced is that

the behaviour of any program could be determined directly through the mathematics of

3Notes can be downloaded from http://www.dcs.ed.ac.uk/home/gdp/publications/Domains.ps.gz
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domain theory without the need to execute that program, and consequently, without the

need to design any language compilers or interpreters. As a result, program verification

and comparison becomes an easier task compared to other approaches to the definition of

language semantics.

The fact that the denotational approach relies, to a large degree, on domain theory means

that several powerful mathematical tools become available for reasoning about program

semantics. Mainly, concepts like CPOs, continuous functions and least fixed points are

easier to express and implement. For example, it is often the case that demonstrating the

termination of a static analysis is dependent on the evaluation of least fixed points.

Finally, the idea of using semantic functions to denote the meaning of programs created

a close relationship between the theory of denotational semantics and the functional pro-

gramming paradigm. The task of implementing denotational interpreters using functional

languages becomes fairly straightforward. Any static analysis that, in turn, is based on the

denotational semantics of the language can also be directly implemented as a higher-level

abstraction (i.e. semantics-directed). The implementations of fixed points are also standard

in functional languages.

1.4 Static Program Analysis

Quite often, it is desirable to predict in advance the set of values resulting from programs

and verify certain properties regarding their runtime behaviour. For this purpose, the area of

static program analysis offers compile-time computable techniques that can be used to safely

approximate properties and values of programs without the need to execute them directly

on computers. The functionality covered by static analysers is wide and ranges from simple

syntactic verifications that can be used in program transformations to complex runtime

properties related to issues of security and optimisation. In general, many approaches exist

for building static analysers. Here, we distinguish four main approaches [102].

1.4.1 Data Flow Analysis

Motivated by the aim of producing smaller and faster programs, the main application area

of the data flow analysis approach has always been the performance optimisation of pro-

gram code generated by compilers. Other important applications that benefit from data

flow analysis include program testing, validation, verification, parallelization and vectoriza-

tion. Classical data flow analyses include reaching definitions, available expressions and live

variables analyses [102].
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A data flow analysis is primarily designed to gather information about the use and

definition of data in a program as well as the dependencies between the different sets of

data. To achieve this, a program is often seen as a graph, where nodes represent blocks of

the program and edges represent flows between those blocks. For example, the following

program computes the factorial of a number n:

F
def
= [fac := 1]1; while [n > 1]2 do ([fac := fac ∗ n]3; [n := n− 1]4)

This program can be represented by the graph of Figure 1.1, and can also be expressed by

the function flow = {(1, 2), (2, 3), (3, 4), (4, 2)}. Sets of equations or constraints are then

?

[fac := 1]1

?

[n > 1]2 -
No

?
Yes

[fac := fac ∗ n]3

?

[n := n− 1]4

?

Figure 1.1: The flow graph of the factorial program.

constructed that relate the entry and exit information of each program node and among the

different nodes. The least solution of these equations represents the result of the analysis.

In the above example of the factorial program, one may construct a reaching definitions

analysis by defining the following set of equations [102]:

Rout(1) = (Rin(1)\{(fac, l)}) ∪ {(fac, 1)}

Rout(2) = Rin(2)

Rout(3) = (Rin(3)\{(fac, l)}) ∪ {fac, 3}

Rout(4) = (Rin(4)\{(n, l)}) ∪ {(n, 4)}

Rin(2) = Rout(1) ∪Rout(4)

Rin(3) = Rout(2)

Rin(4) = Rout(3)
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Where l is any label, l ∈ {1, 2, 3, 4}. Rout(l) here relates information at the exit point of a

node, l, in terms of the inputs to that node, and Rin(l) relates information about the entry

point of node, l, in terms of the outputs from that point. The restriction, Rin(l′)\{(x, l)},

and the union, Rin(l′) ∪ {(x, l′)}, refer to the change that occurs in the value of variable

x at program node l′, where the previous value of x was obtained at node l. On the other

hand, Rin(l) reflects the information collected from nodes whose outputs flow into the input

of node l. Hence, Rout(l′) is added to the value of Rin(l) whenever control flow is possible

from node l′ to node l.

In a reaching definitions analysis, the information collected about a program point rep-

resents the assignments that can reach that point, i.e. assignments not overwritten by the

time the point is reached. Hence, solving the above equations will result in the least solution

of Figure 1.2 (the question mark ’?’ symbol denotes unknown value).

l Rin(l) Rout(l)

1 (n, ?), (fac, ?) (n, ?), (fac, 1)

2 (n, ?), (n, 4), (fac, 1), (fac, 3) (n, ?), (n, 4), (fac, 1), (fac, 3)

3 (n, ?), (n, 4), (fac, 1), (fac, 3) (n, ?), (n, 4), (fac, 3)

4 (n, ?), (n, 4), (fac, 3) (n, 4), (fac, 3)

Figure 1.2: The solution of the reaching definitions analysis for the factorial program.

Data flow analysis is a mature research area, where frameworks have been developed to

classify and solve different classes of data flow problems. These problems can be described

using the formalisms of the different frameworks and a solution algorithm is then selected.

The earliest framework for data flow analysis can be ascribed to Kildall [84], who was also

the first to use semi-lattices in such analyses. A survey can be found in [88], which includes

the rapid, continuous, distributive, monotone and k-bound frameworks.

The most popular framework for data flow analysis is the monotone framework due to

[83]. In this framework, data flow problems are defined through lattices (either complete

or semi-lattices) of values with a meet (join) operator, often called the property space, and

a family of transfer functions defined over those lattices. To create an instance of the

framework, a (directed) flow graph is required, where the transfer functions are bound to

the graph nodes using a function map. The association of a function to a particular node

means that all the information gathered at the node is mapped to lattice values. This also

allows for data flow problems to be phrased as equations that encode the information at each

node in terms of the information at the predecessor (successor) nodes and the local transfer
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functions. The solution to a problem is then obtained by computing a fixed point (least or

greatest) of the equation system, where a lattice value is associated with each node of the

flow graph. An interesting treatment of the monotone framework for concurrent systems is

given in [48].

The only application of the data flow paradigm to the analysis of the π-calculus has

been given in [81], where the issue of causality among processes and true concurrency is

examined. However, as we are unaware of any security-related data flow analyses, we shall

not discuss this paradigm any further.

1.4.2 Control Flow Analysis

A control flow analysis is concerned with answering the following question: Given a particular

point in a program, what is the set of subprograms, functions, commands etc. that can

be reached from that point? In other words, a control flow analysis attempts to record

information about the different execution paths in the program. This information is then

used to conduct program optimisation and transformation as well as determine runtime

properties. Despite the fact that the early control flow analysis techniques were developed

mainly for the functional programming paradigm, control flow analyses were later utilised

in other paradigms as well, like the object-oriented, concurrent and logic programming

paradigms.

Often, a control flow analysis is expressed as a constraint-based analysis and its solution

relates the different points of control flow of the basic program blocks. Taking a functional

program as an example, the set of constraints may be classified into three main classes,

assuming a finite set of program labels. The first two classes relate function abstractions and

variable values to their corresponding labels, respectively. The third class expresses which

formal parameters of functions are bound to which actual parameters in function applications

and whether the results returned from functions can be returned by the applications in which

they appear.

For example, consider the following functional program [102]:

[[fn x => [x]1]2 [fn y => [y]3]4]5

If we assume functions C(l) and label(x), where the former indicates the set of expressions

that l may evaluate to, and the latter the values that variable x may be bound to, then the

following classes of constraints may be stated for the above program. The first class relates
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values of function abstractions to their labels:

{fn x => [x]1} ⊆ C(2)

{fn y => [y]3} ⊆ C(4)

The second class of constraints relates values of variables to their labels:

label(x) ⊆ C(1)

label(y) ⊆ C(3)

The final class expresses information about function applications, where the following con-

ditional constraints are introduced (the inclusion of functions fn x => x and fn y => y

provides for the possibility that both functions may be applied):

{fn x => [x]1} ⊆ C(2) ⇒ C(4) ⊆ label(x)

{fn x => [x]1} ⊆ C(2) ⇒ C(1) ⊆ C(5)

{fn y => [y]3} ⊆ C(2) ⇒ C(4) ⊆ label(y)

{fn y => [y]3} ⊆ C(2) ⇒ C(3) ⊆ C(5)

The least solution to the above equations is given as follows:

C(1) = {fn y => [y]3}

C(2) = {fn x => [x]1}

C(3) = { }

C(4) = {fn y => [y]3}

C(5) = {fn y => [y]3}

label(x) = {fn y => [y]3}

label(y) = { }

This solution reveals that the function, (fn y => y), is never applied in the program (since

we have that label(y)={}), and the program may only evaluate to the function, fn y =>

y, (since we have that C(5) = {fn y => [y]3}). Hence, the last two conditional constraints

have false left sides leading to false right sides.

To achieve a more precise control flow analysis, the concept of k-CFA analysis (CFA

stands for C ontrol F low Analysis) was developed in [119], where k stands for the level of

context information taken into account in the analysis. Hence, a 0-CFA denotes a context-

insensitive or monovariant analysis. On the other hand, when k > 0, the analysis is described

as context-sensitive or polyvariant . The presence of dynamic context information allows for
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the different instances of variables and program blocks to be distinguished and therefore,

arrive at more precise results for the analysis. Several variations of the k-CFA analysis exist,

for example the uniform k-CFA, polynomial k-CFA and the Cartesian product algorithm.

Control flow analysis has been combined with other approaches, like data flow analy-

sis, abstract interpretation and flow graphs, to achieve better quality, understanding and

presentation of the final results. Data flow information may be included in the final set of

results obtained from the control flow analysis, which then results in better quality of control

flow information. The use of abstract interpretation techniques is necessary for tuning the

complexity of the analysis versus its precision. As with the data flow analysis, flow graphs

are a handy tool to visualise results and gain better understanding of the flow of control

among different program blocks.

1.4.3 Abstract Interpretation

An abstract interpretation allows for programs to be analysed by running their specifications

over finite approximated semantic domains that are less precise than the concrete semantic

domains, but that are characterised as being safe computable abstractions of the concrete

domains. In fact, the original work by [45] has developed from being a specific framework

for imperative languages to a general framework offering solutions on the design of static

analyses for different programming paradigms. It even became closely linked with other

approaches like data flow analysis, control flow analysis and type systems.

The first step in designing an abstract interpretation is to determine whether the stan-

dard semantics of the language is sufficiently rich to be able to capture the property under

consideration. If not, a non-standard semantics is designed as an extension or modification

of the standard semantics to capture the property of interest. The resulting non-standard

semantics is sometimes proven to be correct with respect to the standard semantics. Differ-

ent approaches exist for proving the existence of a correctness relation. The approach we

follow in our framework is to show that for all the non-standard semantics elements, the

standard semantic component can be extracted from these elements.

More formally, assume P is a program, (|P |) = v ∈ V is the standard semantic evaluation,

and [[P ]] = l ∈ L is the non-standard semantic evaluation, then the correctness relation R is

formalised as a compositional function:

∀P : R([[P ]]) = (|P |)

∀v1, v2 ∈ V, l1, l2 ∈ L : R(l1) = v1 ∧ R(l2) = v2 ⇒ R(l1 ? l2) = v1 ? v2

Where, ?, is a composition operation that constructs the complex meaning, l1 ? l2, from
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the primitive meanings l1 and l2. Often proving the existence of R is largely dependent

on the amount of information about the standard semantics retained in the non-standard

semantics.

Since the concrete semantics (standard or non-standard) may operate over infinite do-

mains, the computation of this semantics is not guaranteed to terminate, even with the use

of least fixed points. Therefore, a suitable approximation (abstraction) is required to keep

the semantic domain finite. This abstraction is shown to be safe with respect to the concrete

semantics by proving that a safety relation is preserved across the abstract semantic values.

This relation expresses the fact that every concrete computation maps to a corresponding

abstract computation, although the latter of course, is less precise.

Hence, if we assume that, [[P ]]] = l] ∈ L], is the abstract semantics function, then the

safety requirement can be formulated as a relation, S, defined as follows:

∀P, [[P ]] = l, [[P ]]] = l] : (l, l]) ∈ S

∀l1, l2 ∈ L, l]1, l
]
2 ∈ L] : (l1, l

]
1) ∧ (l2, l

]
2) ∈ S ⇒ (l1 ? l2, l

]
1 ? l

]
2) ∈ S

The definition of the safety relation S is highly dependent on the semantic domains and the

choice of the abstraction adopted.

In the theory of abstract interpretation, the set of abstract semantics values, L], is

interesting because it is augmented with some ordering relation, v, which results in L]

having some structure, like a complete lattice. Moreover, we can impose the following

implications between the complete lattice, L], and the safety relation, S:

∀l ∈ L, l]1, l
]
2 ∈ L] : (l, l]1) ∈ S ∧ l]1 v l

]
2 ⇒ (l, l]2) ∈ S

∀l ∈ L, l] ∈ L′], L′] ⊆ L] : (l, l]) ∈ S ⇒ (l,uL′]) ∈ S

The first implication states that if an abstract value, l]1, is safe, then a larger value, l]2, will

also be safe and, therefore, the smaller value, l]1, would constitute a more precise or better

solution. The second implication states that for a set of safe abstract values, their greatest

lower bound is also a safe value. In other words, for a concrete semantic value, l, there is

always a smallest abstract value, u L′], among a sub-lattice, L′] ⊆ L], of safe values, that

is itself safe with respect to l. Practically, this has the effect that an abstract interpretation

needs to be performed only once for a program to obtain the best solution.

An alternative approach to the safety proof involves the introduction of a pair of ab-

straction/concretisation relations that are shown to form a Galois connection between the

concrete and abstract domains. Hence, a tuple, (L,α, γ, L]), is a Galois connection between

the two complete lattices, (L,v,u,t,⊥,>), and, (L],v,u,t,⊥,>), where α : L→ L] and
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γ : L] → L are monotone functions, if the tuple satisfies the requirement that:

γ ◦ α w λl.l

α ◦ γ v λm.m

Which express the safety of the abstract semantics at the cost of losing precision. On certain

occasions, widening and narrowing techniques may also be used in combination with Galois

connections to further approximate fixed points.

The main application of abstract analysers has been in combination with language com-

pilers that could be used in program optimisation and to prove that the program is safe with

respect to a certain security policy. Examples of popular non-security-related implementa-

tions of abstract interpretation-based analyses include the strictness analysis, sharing analy-

sis, the ground substitutions analysis in logic programs and approximations of n-dimensional

vector spaces over integers and rational numbers.

1.4.4 Type Systems

Type systems are widely used in programming languages to avoid unwanted behaviour of

their programs during runtime. Some of this behaviour could be crucial to security violations,

like private information leaks and restricted address space accesses. In general, a type is

regarded as holding information that is true about the program entity it types. Moreover, if

one thinks of a type as being a collection of values, then a subset of that collection constitutes

a subtype. Subtyping expresses an ordering relation among the different types. It also may

be thought of as giving more refined information about the subtyped entity.

One may also define a principal type as the most general type of an expression. For

example, a lambda abstraction, λx.x, has the principal type, a → a, where a could be

instantiated with any type. Principal types of language expressions are often computed

from the types of their subexpressions using Robinson’s unification algorithms [113].

A typing environment is used to map the different program entities (statements, ex-

pressions, constants, variables etc.) to their types. Such environment may be constructed

manually according to a set of axioms and rules. Consider the following imperative language:

S, S1, S2 := [x := a]l

| [skip]l

| S1;S2

| if [b]l then S1 else S2

| while [b]l do S
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Where l, l′ ∈ {1, 2, 3, 4}. Then each statement may be considered as typed by the type

Σ→ Σ, where, Σ, is the type of the state of the program. This type could denote the result

of a reaching definitions analysis, RD. Based on this interpretation of Σ, one may introduce

the axioms and rules of Figure 1.3 [102].

(assign) [x := a]l : RD → ((RD\{(x, l′)}) ∪ {(x, l)})

(skip) [skip]l : RD → RD

(seq)
S1 : RD1 → RD2 S2 : RD2 → RD3

S1;S2 : RD1 → RD3

(if)
S1 : RD1 → RD2 S2 : RD1 → RD2

if [b]l then S1 else S2 : RD1 → RD2

(while)
S : RD → RD

while [b]l do S : RD → RD

(sub)
S : RD2 → RD3

S : RD1 → RD4

if RD1 ⊆ RD2 and RD3 ⊆ RD4

Figure 1.3: Types for the reaching definitions analysis.

These axioms and rules are explained as follows. Axiom (assign) states that any previous

assignments carried out on the variable, x, are removed from the final state RD, and x is

declared as having the value assigned at current statement marked l. Axiom (skip) does not

alter RD and rule seq composes the type of a sequential statement, S1;S2, from the types of

the composed statements, S1 and S2. Rule (if) deals with the conditional statement, which

is given the type of either branch. Rule (while) assigns to a while statement the type of its

body. Finally, rule (sub) deals with the subtyping of statements.

Given the factorial programme of Section 1.4.1:

F
def
= [fac := 1]1; while [n > 1]2 do ([fac := fac ∗ n]3; [n := n− 1]4)

It is possible to apply the axioms and rules of Figure 1.3 to arrive at the final type for F as

follows:

F : {(n, ?), (fac, ?)} → {(n, 4), (fac, 3)}

Which confirms to the results of Figure 1.2, Section 1.4.1, which shows that Rin(1) =

(n, ?), (fac, ?) and Rout(4) = (n, 4), (fac, 3).

Alternatively, a type inference algorithm may be constructed to infer the types of lan-

guage entities from the types of their surrounding context. The set of typing axioms and
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rules can then be used to make judgements about whether a particular program construct

is well typed within the typing environment or not. Unification in the algorithm may also

be used to generate principal types. Whenever all the programs of a language are shown to

be well typed (by proving a type soundness theorem stating that well-typed programs are

well behaved), the language is then said to be type sound .

Using static type checking , the layout of types in a program are tested against the typing

rules to reveal any violations. Programs that do not enforce the typing rules and that

contain trapped errors (errors detected by the typing system) are eliminated. Again, there

is an element of approximation in the manner that static type checking works: if a program

passes the type-checker, it is surely well typed. Otherwise, it is ill typed or cannot not

guaranteed to be well typed. Since defining the typing system is a separate problem from

constructing a type-checking algorithm, it is often the case that type system designers run

into the problem of defining type systems that will only admit infeasible algorithms or

sometimes, no algorithms at all.

Most type systems found in procedural languages are first order , i.e. they lack type

parameterisation and abstraction. Whenever these are present, the system is called second

order . Type parameterisation refers to those programs that are of the type λX.M , where M

is the program and X is a type variable. This means that M is parameterised with respect

to X, which is instantiated only by the context. Parameterisation is a feature often found in

polymorphic languages, like ML. Type abstraction is a feature that often appears as opaque

types in interfaces in modular languages, like CLU [86].

Type systems can also use special annotations, called effects, that express the effect of

using each of the types defined by the typing environment. For example, a function type of

the form τ1
ϕ→τ2 maps values of type τ1 to values of type τ2 and as a result of this application,

it may perform a call to function ϕ. Effect systems are often implemented as extensions of

type inference algorithms and are useful in providing information about the internal steps

of computation for each program expression.

Finally, one of the interesting topics in the subject of type systems is that of type equiv-

alence. Type equivalence relates separately written type expressions. By-name equivalence

refers to those types that match by having the same names. On the other hand, structural

equivalence refers to those types that match by having the same structure. It is usual to

find typing systems that adopt a mixture of both equivalence relations.
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1.5 Security Properties

As we highlighted earlier, the task of protecting private and critical information from unau-

thorised actions conducted by malicious intruders or resulting from innocent errors has

grown into an area of major importance in the design and analysis of computing systems.

In the following paragraphs, we attempt to cover briefly some of the properties often dealt

with when considering the security of computing systems and that are of interest to our

framework. These include the secrecy and authenticity of information.

1.5.1 Secrecy

The problem of protecting the secrecy of private information is a long-standing problem

that finds its roots in the pre-computing age. Models were devised to prevent unauthorized

subjects accessing classified physical resources (like paperwork) owned by other subjects.

The success of these models in the real world encouraged researchers to adapt the same

ideas to protect the secrecy of information in the computing world.

The early computer security models were access control models that regulated the access

of users and programs to sensitive data. These models could be classified into two main

categories: mandatory access control (MAC) and discretionary access control (DAC) models.

The fundamental difference between the two categories is that the former grants a system-

wide policy the right to decree which subjects have access to which resources, whereas

in the latter, the owner of each particular resource decrees itself which subjects can have

access to the resource. The main example of MAC models is the Bell and La Padula [19]

model, which is based on rigid military security policies and can be summarized by the no

read-up/no write-down properties that prohibit low-level (unclassified) subjects obtaining

high-level data. A variation of the Bell and La Padula model known as the Biba model [20]

preserves the integrity of information by reversing the capabilities of subjects. Hence, low-

level (unclassified) subjects cannot alter the contents of high-level resources. This property

is known as the no read-down/no write-up property.

The rigidity of MAC models is relaxed in DAC models. Every owner of a resource

is responsible for granting rights to access and modify that resource to other subjects.

These rights may change with time and depending on the appearance of new entities and

the disappearance of old ones. Hence, in addition to the system-wide policy that assigns

subjects to groups, a local policy exists for each subject that specifies the access rights to

its resources. An example of the implementation of DAC models is the permissions list of

Unix files.
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DAC models, in general, suffer from the problem of malicious programs that run on behalf

of a high-level subject and that may modify the access rights of resources belonging to that

subject granting access to low-level subjects4. This problem is not present in MAC models,

as any writing-down or reading-up between high-level and low-level subjects is prohibited.

However, the MAC models can only monitor explicit flows of information and fail to capture

the implicit flows.

Implicit flows were first referred to by Butler Lampson in his famous note on covert

channels [85], in which he raised new questions on how private information could be leaked

in computing systems. The note examined the task of confining a program and revealed

the real boundaries that this problem could have. The transmission of data may occur not

only as a result of sending that data over explicit communication channels, but also over

media not intended for communications in the first place. Well-known examples of covert

channels are the use of computer storage space to transmit data by filling or emptying the

space and the revealing of sensitive information about the guards of conditional and while-

loop statements within the bodies of those statements. Moreover, the solution to completely

avoid such covert channels in system design, as suggested in [85, page 3], is rather restrictive.

As a result of these subtleties in the way information is passed around, new security

models appeared that aimed at capturing the whole flow of information in a system, rather

than just modelling the access of subjects to resources. A well-known example of information

flow models is the lattice model proposed by Denning [46], which covers both explicit (e.g.

assignments) and implicit (e.g. conditionals) flows. The security levels of subjects are

arranged in a lattice whose ordering is determined by the system security policy. Information

then may flow only from the low-level subjects to the high-level ones.

Other approaches have also been adopted to represent information flows in the presence

of covert channels. These include non-deducibility [124] and non-interference [67]. There

are two main problems associated with non-deducibility, as McLean explains [90]: First, it

weaker than non-interference, which is problematic for cryptographic-based systems. Also, it

may block the flow of information from low-level to high-level entities in particular systems.

Second, it is non-compositional, which results in the inability to reason about the secure

composition of insecure components.

Non-interference has also been a hot topic in recent years and one may state that there

is no general consensus as to what constitutes the definition of non-interference. In their

original work [67], Goguen and Messeguer presented a model of non-interference for deter-

ministic systems, i.e. systems whose output is solely determined by their input. The model

4Such programs are often called Trojan horses.
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is based on the observation that a system is non-interfering whenever the output of that

system does not differ with respect to variations in its input. Otherwise, the system is

interfering . The difference in system behaviour is expressed in terms of purging functions,

i.e. functions that remove parts of traces of input commands from the resulting output. A

non-interfering system identifies a purged output with a non-purged output.

Another definition of non-interference was given by the core calculus of dependency [2],

which is an extension of Moggi’s computational λ-calculus [98]. The dependency calculus is

a general framework for the comparison of the different type-based dependency analyses, like

program slicing, call-tracking, binding-time analysis and secure information flow analysis.

Notions of strong and weak non-interference are formalised by a denotational model for

the calculus, where the strong version requires the termination of the system and the weak

version does not (thereby allowing high inputs to affect the termination of the system without

affecting the non-interference result). The different analyses are then given as instances of

the calculus satisfying either the strong or the weak versions.

Finally, it is worth mentioning the work achieved so far by Focardi and his team [55,

62, 61, 58, 59, 56, 60, 57] in laying down the basis for a unifying theory of dependency that

uses different variations of CCS in reasoning about most of the security properties, like the

secrecy, authenticity, integrity and availability properties.

Other more recent definitions of the secrecy property build on some theory of process

equivalence. For example, in the spi calculus [5], secrecy is defined in terms of testing

equivalence between two instances of a system instantiated with two different messages. An

intruder who is observing these instances is unable to differentiate between them.

As we mentioned earlier, the introduction of computer networking meant that intruders

could now undermine the security of information while being transmitted from one computer

to another. The solution to communication security was found in cryptography. While mod-

els of access and information flow control are primarily concerned with protecting sensitive

data from unauthorised subjects, cryptography offers a different vision: security by obscu-

rity. Sensitive data can be sent over public communication channels as long as they are

encrypted, which means that it is of little use to intruders. Discussing the fundamentals of

cryptography is outside the scope of this section. We recommend [91, 116] as sourcebooks

for those seeking background on this topic.

In our definition of the secrecy property, we shall adopt a form of explicit information flow

model that monitors the movement of data among the different processes in a system. A low-

level process obtaining data created by another high-level process results in an instance of the

process leakage threat. The explicit meaning of the word “obtaining” here is strictly defined
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in terms of the message-passing communications in mobile systems, and in terms of message

passing and message processing (e.g. decryption) in cryptographic systems. Issues related

to the more complex notions of non-interference and equivalence-based secrecy are left as

future work that builds on the current static analysis framework, and recommendations are

made in the concluding chapter on future work. This choice of the definition of secrecy as

the main working definition for our static analysis framework is in line with the current state

of security models. Most of the current implementation systems rely on some form of access

or information flow controls. Non-interference and process-equivalence are still immature

areas largely confined to the research community and have not yet been proven practically

successful, in particular, for the case of non-deterministic systems.

1.5.2 Authenticity

The authenticity property is generally defined as the assurance about the identity of the

origin of a particular entity (agent, datum, message etc.). This identification may entail

some trust in the sense that identifying a trustable entity could initiate different behaviour

than in the event of identifying a less-trustable entity. For example, when performing online

booking for air flight tickets, we would like to make sure that the booking site, to which

the credit card details are submitted, has a valid digital certificate signed by a trusted third

party (or a Certification Authority). This will increase the confidence about sending credit

card details to the site. However, if no valid certificates were produced, then the site will be

less trustworthy of submitting sensitive information.

The problem of authentication when dealing with isolated computing systems becomes

a problem of authorization and the protection of the integrity of data from malicious or

erroneous behaviour. Therefore, mechanisms like user login, token-based authentication and

biometrics authorization become sufficient to protect static information from being modified

by unauthorized intruders. Such modifications could be viewed as tampering with the origin

of the stored data and, therefore, undermine the authenticity property of that data.

The presence of communications among systems introduces the necessity for authen-

tication protocols since the communicating entities may often be unaware of each other’s

identities beforehand, thereby undermining techniques like user logins, which require some

prior knowledge about the entities involved. The purpose of an authentication protocol

then is to provide a well-defined sequence of messages at the end of which the two entities

participating in the protocol will be assured of each other’s identities. This may take place

with the aid of a trusted authentication server. Protocols that authenticate both partici-
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pating entities are called bilateral protocols. Unilateral protocols, on the other hand, refer

to protocols that authenticate either of the two participating entities, but not both.

Most of the existing authentication protocols make use of either secret-key or public-key

cryptography. Usually, in secret-key protocols, the presence of a trusted server is required to

hold the long-term keys shared with each of the participating agents, while session keys are

created for the duration of authentication sessions. Examples of secret-key systems include

Otway-Rees [104] and Kerberos [92]. In public-key protocols, a Public-Key Infrastructure

(PKI) is usually implemented to manage key distribution issues, especially those related

to name-to-key bindings where certificates are used to validate or invalidate such bindings

(see [63] on the topic of PKI). The presence of a server may not be required beyond the

initial stage of creating the key pairs. The protocol could then involve creating session

keys for each authentication session. Examples of public-key bilateral protocols include

the Needham-Schroeder public-key protocol [100], whereas the Woo-Lam protocol [133] is

an example of unilateral protocols. In either the secret-key or public-key protocols, fresh

information must be provided in each session to prevent replay attacks.

Recently, other authentication models have been suggested. In the spi calculus [5], for ex-

ample, authenticity is formalised in terms of a testing equivalence relation. The authenticity

of messages is preserved if an instance of a system instantiated with that message is testing

equivalent to the system’s specification. Other models include the use of proof-carrying code

in [13, 18] as a general framework for the design and implementation of authentication and

authorization services using high-order logics. Also, in [59], the concept of non-interfering

systems is used as the basis for defining the different security properties, including the au-

thenticity of messages. However, it is still to be seen how practical and feasible such models

could turn out to be in real world situations.

The model of authentication that we adopt in our framework is based on a web of trust;

systems are classified as running at different trust levels. Breaches will occur whenever

highly trusted processes obtain data originating at processes with lower levels of trust.

Similar to the notion of secrecy, the word “obtain” here has different meaning depending

on the presence or absence of cryptographic operations in mobile systems. Generic mobile

systems will obtain the untrusted information as a result of the value-passing behaviour,

which denotes communications among processes. In cryptographic systems, both value-

passing and value-processing behaviours may result in authenticity breaches.
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1.6 Further Reading

The main areas underlying the background to the research presented in this thesis were

reviewed in this chapter. These areas are classified into four headings: Mobile systems,

denotational semantics, static program analysis and computer security.

Recommended readings in the area of formalisms for mobile computing include [96],

which is an introductory book on the subject of the π-calculus, and [114], which provides

a comprehensive treatment of the theory underlying the π-calculus. The spi calculus is

explained in detail in [6]. The main book on the subject of static program analysis is [102],

which provides a chapter for each of the main approaches; data flow analysis, control flow

analysis, abstract interpretation and type systems.

A recommended reading on the subject of denotational semantics is [122], which dis-

cusses the denotational methodology in the definition of programming languages semantics

as introduced by Scott and Strachey [123, 117, 118]. A gentler introduction on denotational

semantics (and other semantics) is given in [131]. The topic of computer security is wide

and many references exist. However, one may suggest here [68] for a reading on general

computer security, [63] on digital signatures, [35, 42] on authentication protocols, [116, 91]

on general cryptography and [103] on electronic payment systems.

1.7 Outline of Our Approach

As we explained in the previous sections, the problem of computer security is a sophisticated

problem that encompasses a wide range of theories and technologies. In this thesis, we

tackle the problem of computer security from perspective of the static analysis of computing

systems specified formally using nominal calculi. Hence, we attempt to establish static-

analysis framework based on abstract interpretations for the analysis of mobile systems

specified in the π-calculus and cryptographic systems specified in the spi calculus.

The framework relies on a denotational semantic model and is aimed at capturing one

aspect of the behaviour of processes in the π-calculus and the spi calculus that has security

significance, i.e. term substitution. This property then can determine which processes

can obtain which terms (information), and based on this result, one can define secrecy

and authenticity properties as the capturing of names created by high-level or low-level

processes, respectively. Crucial to the termination of the analysis is the selection of a

suitable abstraction in order to keep finite the semantic domains within which processes

run. This abstraction has to be shown safe with respect to the concrete semantics.
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The structure of the rest of the thesis is organised as follows:

- Chapter 2: We survey state of the art work related to the area of the analysis of mobile

and cryptographic systems as well as review some denotational models that have been

proposed for the π-calculus.

- Chapter 3: We introduce the languages of the π-calculus and the spi calculus and

review their syntax and structural operational semantics. We define standard denota-

tional semantics for the languages that model the operational behaviour of processes.

The denotational semantics is shown to be sound and adequate with respect to the

structural operational semantics.

- Chapter 4: We introduce a non-standard semantics that is a correct modification of the

standard denotational semantics and we design an abstraction that keeps the semantic

domains finite to ensure the termination of the analysis. We prove the safety of the

abstract semantics with respect to the non-standard semantics. Finally, we apply

the abstract interpretation to a number of examples including a file transfer protocol

and a number of authentication protocols, like the Needham-Schroeder public-key,

SPLICE/AS, Otway-Rees, Kerberos, Yahalom and Woo-Lam protocols.

- Chapter 5: We utilise the results of the abstract interpretation established in Chapter

4 to define the secrecy and authenticity properties. We apply these definitions to the

results of the abstract interpretation of the example systems analysed in Chapter 4.

- Chapter 6: We review two implementation prototypes of the static analysis framework

for cases of mobile systems and cryptographic protocols. These are called the Picasso-

A Pi-Calculus Analyser for Secrecy and Security Objectives, and Spicasso - A Spi-

Calculus Analyser for Secrecy and Security Objectives tools.

- Chapter 7: Finally, we conclude the thesis and discuss its major contributions to the

area of the static analysis of computing systems for the detection of security threats.

We also give directions for prospective work that could spark from the work achieved

so far and presented in this thesis.
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Chapter 2

Related Work

2.1 Introduction

Covering research undertaken in all the areas related to the scope of the framework of this

thesis and reviewed in the previous chapter demands an enormous effort, which would merit

its own body of work and thesis. Therefore, we shall concentrate on two main areas: static

analysis techniques with applications in the area of security of mobile and cryptographic

systems and denotational semantic models for nominal calculi. Furthermore, we narrow

these areas to include only research that specifically deals with the language of the π-calculus

and its cryptographic extension, the spi calculus.

2.2 Static Analysis Techniques for Program Security

In recent years, the use of static program analysis in analysing mobile and cryptographic

systems and verifying their security properties has grown into a major area of research,

where a variety of techniques have been proposed and implemented to varying degrees of

success. In this section, we review research carried out in the areas of control flow analysis,

abstract interpretation, type systems and other logic-based areas.

2.2.1 Control Flow Analysis

This approach has been adopted on a number of occasions by [24, 25, 27, 26], in which the

flow logics approach [101] is used to predict certain security properties pertaining to mobile

systems, like having the confinement of private information and the adherence to the Bell

and La Padula properties [19].
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The main analysis focuses on the usage of channels and the values sent over them in

the π-calculus. In particular, a fresh name is associated with a superset of the set of names

that can be communicated over that name. Also, an input parameter is associated with a

superset of the set of names that may substitute it at runtime.

One major drawback with the manner by which the analysis is carried out is that it

identifies all the copies of a fresh name arising from the restriction operator. This implies

that non-uniform properties of names that change between the different runs of systems (as

explained in Chapter 4) cannot be expressed straightforwardly. The analysis also suffers

from the inability to detect certain deadlocks arising from situations where the channel of

communication is a fresh name with restricted scope.

The separation between the problem of validating a given solution and the construction of

such a solution as formulated by the flow logics approach, meant that the resulting analyses

of [24, 25] are targeted towards the validation of a proposed solution rather than offering a

constructive algorithm. However, a minimum solution for the validating analysis is proven to

always exist, and in [27], a constructive algorithm for this minimum solution is also supplied

assuming a finite set of names.

The security properties dealt with in [24, 25] are all based on the main control flow

analysis. In [24], the confinement problem of private names is the main property. In [25],

the no read-up/no write-down property introduced by Bell and La Padula [19] is investigated.

This property is often regarded in the security literature as a rigid form of security.

Finally, [26] provides a control flow analysis for a variant of the spi calculus with history-

dependent cryptography using the idea of confounders in encrypted messages. This facili-

tates the comparison of ciphertexts since, for example, {0, (ν r)}k 6= {1, (ν r)}k. The paper

establishes two main results. First, it shows that the Dolev-Yao definition of secrecy [47]

is expressible in terms of a control flow analysis. No specification of the Dolev-Yao most

general attacker is provided; instead, it is computed using an approximation relation. The

second result establishes that the analysis can capture the form of non-interference stated in

[1]. This result elegantly separates between the issues of confidentiality and non-interference

using the control flow analysis approach.

2.2.2 Abstract Interpretation

This approach has been applied effectively to the analysis of mobile systems. Notable works

include [126, 127, 99, 51, 52, 53]. In [126], a sound non-uniform description of how topologies

evolve in closed systems that do not contain nested replications is presented. The approach is
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based on the abstract data structures of [82], where the abstract meaning of a process in the

π-calculus is represented as an undirected hypergraph (a hypergraph is a graph where an edge

can connect more than two vertices) signifying the sequence of internal computations that

evolve within a process from its initial specification. The analysis was further developed and

greatly simplified in [127], where a refined semantics is introduced to capture the instance

of a channel that establishes a link between two processes.

The study of system interactions in [127] has inspired the analysis of [51], where the

main theme is detecting the leakage of confidential information in the presence of unknown

contexts. The analysis is non-uniform and can distinguish between the different instances

of a process. The open semantics takes into account the lack of specification of the intruder

processes and unlike [126, 127], the analysis is not restricted to systems with no nested

replications. Encoding the ability to deal with unknown specifications into the semantics is

a different alternative to our approach, which adopts a specification of the intruder (i.e., the

Dolev-Yao most general attacker).

The analysis of [51] was extended in [52] in an occurrence counting analysis for detect-

ing the exhaustion of resources, mutual exclusion and deadlock properties. On the other

hand, a more generic parametric framework has been proposed in [53], which is capable of

expressing the equality and inequality relations between names, i.e. the dependency among

names at their creation point. The abstract interpretation approach has been used by [99]

to approximate cryptographic protocols specified in a cryptographic language with finite

principals and sessions (the spi calculus allows infinite principals and sessions) using tree

automata. An implementation of the analysis exists. However, it has been applied to small

protocols with finite runs only (mostly single runs).

2.2.3 Type Systems

Type systems have been extensively researched within the mobile systems and security

community and notable examples include the works of [1, 72, 112, 37, 73, 77, 74], where

properties related to information privacy, resource access control and trust have been tackled.

In [72], a typing system is suggested for a distributed variant of the π-calculus called Dπ,

where processes reside at named locations and communications occur locally. In order to be

able to express remote communications, a process movement primitive is introduced. The

typing system introduces the notion of location types, where each location is typed by the

resources available to agents residing at that location. This will control the set of capabilities

that an agent can perform at a certain location. For example, the agent may be able to send
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but not to receive data. Runtime errors are then used to express the breach of type safety.

These errors can detect illegal movements of processes as well as illegal communications.

In [112], dynamic type checking is used to deal with malicious unspecified agents moving

between different sites. Open secure semantics are given for the language of Dπ, where

special bad types are used to distinguish untyped code in what is known as a partial typing

system, where only a subset of agents is well-typed. Filters are used by sites to judge the

trustworthiness of an incoming agent. Based on this judgement, a notion of authority from

which trust between the different sites harbouring processes can be built. Hence, the need

for dynamic type checking is, in fact, reduced. The correctness of the behaviour of well-typed

processes is shown to be safe with respect to well-behaving sites.

A more extensive treatment of the subject of trust in mobile systems modelled by the

π-calculus is given in [74]. Here, a system of Boolean annotations is used to guarantee that

only trusted data are used in trusted contexts. The system relies on a notion of trust during

run time. An algorithm for creating the general types of the system is also suggested.

In [73], two security properties, the resource access control and information flow proper-

ties, are dealt with in a typing system for a variant of the asynchronous π-calculus [31, 76]

with security levels. Using a security policy that assigns levels to processes, a process can

only access resources that were created by processes running at the same or lower levels.

Similarly, a process can only write to resources created by higher-level processes. On the

other hand, implicit flow of information is dealt with by a notion of non-interference, which

depends on a form of may-testing.

An advanced static type checking system is used in [77] to guarantee secure information

flow for general process behaviour in the polyadic π-calculus extended with extra syntactic

constructs. In this typing system, non-linear types are used as part of a finite partially

ordered set of action types. The action type of a process is an abstraction of the causal

dependency among the free channels of that process. With the use of secrecy indices, a

subject reduction property of the resulting typed processes is given. This implies that

composing a typed process with external processes does not change its internal secrecy. The

subject reduction property is then used to express a form of non-interference among low-level

and high-level processes. The resulting system is also used to embed the system of [130],

using typed process representation.

One of the major drawbacks of type systems is their inability to express non-uniform

properties due to the fact that they associate the same type with the different runs of the

system. In [37], this problem was remedied by introducing a primitive for fresh type creation.

Special channel types called Groups can be created, where names of a type belonging to a
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particular group cannot be communicated over channels of another group type (possibly

with a lower secrecy level). This will protect against the leakage of secret channels from one

group to another.

It seems, to date, that the work of [1] has assumed an authoritative role in the subject of

security and types in the spi calculus. This is simply due to the wealth of basic concepts that

the work contains, and in particular, the idea of mixing (primitively) typed and untyped

data in the typing system and the idea that every participant in a security protocol must be

typable. An overall view of secrecy principles is also given in the context of the spi calculus.

The proposed typing system guarantees the protection of secret data against leakage through

a notion of non-interference that is based on testing equivalence. However, the system does

not clarify the issue of principal types and therefore, no complete and sound typing algorithm

is provided.

Non-interfering security has also been treated in the area of type systems, although to a

lesser extent. The work of Smith and Volpano [130] presents a type system for a sequential

imperative language that can deal with explicit, as well as implicit information flow. Insecure

explicit flow is detected as a flow from high-level to low-level variables. Implicit information

flow, on the other hand, occurring within conditional and while-loop statements is formalised

by a type soundness requirement that guarantees that the command levels of the branches

of conditional statements and while-loop bodies be as high as the level of the guards of

those statements. However, the type system fails in situations where programs do not

terminate successfully as a result of assuming that the sequential composition of typable

commands is also typable. This problem was later remedied in [120], and a type system

for a multi-threaded imperative language was suggested. However, the resulting solution is,

unfortunately, too restrictive; the guard of a while-loop is always limited to a low level of

security and the body of the while-loop itself is classified as a low-level command. In general,

both works [130, 120] adopt a notion of non-interference, which is closely related to the

original view given in [67]: the final values of the low-level variables should be independent

of the final values of the high-level variables.

A more refined type system for non-interference within concurrent languages is proposed

in [31, 32]. The main work extends the system proposed in [120]. However, the attitude

towards the concurrent language semantics is that of small step as compared to the big step

semantics adopted by [120]. The implication of this is that intermediate values of low-level

variables are also considered (not only the final values). This further results in a stronger

notion of non-interference that relieves restriction on the levels of guards and bodies of

conditional and while-loop statements. The main difference between [31] and [32] lies in

29



dealing with scheduling mechanisms of concurrent subprocesses (threads).

A simple treatment of non-interference is also given by [110] for an extension of the π-

calculus, which can express the independent execution of parallel processes. The definition of

non-interference adopted in [110] is based on weak barbed reduction congruence [114]. The

semantics of the language annotates processes with security levels drawn from a complete

lattice. The final non-interference result then states that pruning high-level sub-terms does

not affect the low-level sub-terms up to the weak barbed congruence.

Another extension of the asynchronous π-calculus, termed the security π-calculus is sug-

gested by [70] that incorporates a type system where security levels and read/write capa-

bilities are associated with input parameters and restricted names. May and must testing

equivalences are then formalised for the language and based on these equivalence formali-

sations, notions of non-interference are enforced. The work is a comprehensive extension of

the earlier work presented in [73].

Finally, the compositional security checker (CoSeC) developed in [56] is a static analysis

tool that builds on the Concurrency Workbench [43]. Both tools are forms of semantics-based

model checkers that can check for properties of processes based on different equivalences and

preordering. The language of input for CoSeC is an extension of CCS with separately marked

high-level and low-level observable actions. The treatment of the tool benefits only finite

state systems and is targeted towards the checking of the non-deducibility-on-compositions

property.

2.2.4 Other Approaches

Other approaches that cannot be directly classified under the previous headings or that may

cover more than one approach have also been suggested and implemented. The work of [65]

is an early attempt to present an abstract binding-time analysis as part of a meta-interpreter

for the π-calculus. The analysis adopts a partial evaluation technique, which aims at using

the known part of the input data in specialising programs. The results of the analysis can

determine the static communications that can be executed at compile-time as well as the

set of static variables that do not change during run-time. The main motivation behind the

work of [65] was program optimisation rather than security (although the results are general

enough to include some notion of security).

The Mobility Workbench [128] is an example of automated tools that are targeted towards

the checking of process equivalences. In particular, the tool checks for the open bisimulation

property in the π-calculus [114].
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In the work of [3] a typing system is given for a generic version of the spi calculus

with constructor/destructor functions. Untyped predicate logic is also used to program a

Prolog-based protocol checker that verifies secrecy properties. The methodology is extended,

in [21], to check for the authenticity property. The equivalence of the two approaches is

established. In [29, 30], a trace analysis is built over a symbolic version of the operational

semantics of the spi calculus, and in [12], a well-crafted approach to the symbolic analysis of

cryptographic processes, in general, is formalised. Earlier attempts to use symbolic semantics

in the analysis of security protocols include [79, 11], where the reachability problem in the

cryptographic protocols is discussed.

The works of [49] and [44] have concentrated on the use of automatic checking of equiv-

alences of processes in the spi calculus. The former presents a framework for a trace-based

analysis of cryptographic protocols, whereas the latter defines a new equivalence, known as

fenced bisimilarity, which removes some of the infinite quantifiers associated with testing

equivalence in the spi calculus.

Finally, we mention the works of [35] and [66]. In [35], belief logics have been used to

analyse a number of cryptographic protocols and the paper is a notable piece of work. The

model checking approach has also been used with the Brutus checker for a dialect of the spi

calculus in [66]. More recently, the Mobility Model Checker (MMC) has been introduced in

[135], as a model checker for the π-calculus, which uses tabled logic programming.

2.3 Denotational Semantics of Nominal Calculi

Apart from the original structural operational semantics that was proposed for the π-calculus

[97], denotational semantic models have also been introduced over the past few years. Some

of these include the works of [33, 36, 39, 54, 69, 71, 121]. Apart from a few examples, the

majority of the work on denotational semantics of mobile systems has adopted an approach

based on category theory. The obvious reason underlying this choice seems to be related to

the fact that category theory offers abstract reasoning that can be easily utilised in deriving

fully abstract denotational models.

The models of [54] and [121] are the first attempts to define a denotational meaning

for processes in the π-calculus. Both are fully abstract with respect to late bisimilarity

and equivalence. The major difference between the two is that [54] defines the semantics

in terms of an internal meta-language for the main category. The language is, in fact,

a type-equational theory based on a typed λ-calculus with non-deterministic summation

and recursion. The interpretation of processes is then given by translating into this meta-
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language. This renders the model of [54] a general framework that relies on a uniform

approach suitable for modelling a variety of nominal calculi. For example, it is possible to

add an interrupt operator to the π-calculus. On the other hand, the model of [121] is more

abstract and concentrates on properties of the categorical solution. This is quite interesting

when dealing with the static analysis framework, as it offers concrete grounds on which the

analysis can be built1.

Stark’s model was further refined in [39] using presheaf categories. These are more

flexible as they support function spaces and offer models for synchronisation trees and event

structures. Unlike the models of [54, 121], the resulting model is capable of expressing early,

as well as, late semantics and hence, it is fully abstract with respect to early bisimilarity and

equivalence. Since our static analysis framework is not designed to necessarily deal with the

early version of the semantics, we opted for the less elaborate model given in [121].

Two set-theoretic denotational models are presented in [71] that are fully abstract with

respect to may- and must-testing in the π-calculus. The models are obtained as solutions

of domain equations in a functor category and are quite close to the works of [54, 121]. A

higher-order version of the π-calculus, where functions as well as names can be communicated

over channels, is modelled denotationally in [69]. An internal language is also given for the

solution O-category, which is used in the process interpretation. The model is only proven

to be fully abstract for transitions (computations) in the higher-order language.

In [33], a new notion of Cartesian closed double categories is developed from the theory

of Cartesian closed categories and used as a basis for the interpretation of the π-calculus.

λ-notation is also used to develop a type system for the resulting interpretation. A final

semantics in the style of [10] is also developed using categorical modelling in [78]. The

resulting model gives a higher-order presentation of the π-calculus using the Edinburgh

Logical Framework (LF) (based on typed λ-calculus) as the meta-language. Strong and

weak late semantics are both dealt with. However, the full abstraction of the model is not

shown with respect to the corresponding bisimilarity and congruence relations. The result

is only shown for transitions.

Finally, away from the category-based models, in the work of [36], a Petri net semantics

is developed for the π-calculus with recursive definitions [114]. The semantics is based on

Place/Transition nets with inhibitor arcs (i.e. PTI-nets) and is proven to be sound with

respect to early transition semantics of the π-calculus. The model also gives a definition of

non-interleaving semantics, which are used to generate causal trees.

1The semantic domains were concretely defined in an unpublished note by Stark. This note can be

downloaded from http://www.dcs.ed.ac.uk/home/stark/publications/fuladm.html
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2.4 Conclusion

In this chapter, we have covered related work carried out within the areas of static program

analysis and denotational semantics for mobile systems and cryptographic protocols speci-

fied in the languages of the π-calculus and the spi calculus, respectively. One may identify

from such related work a general lack of overlapping research between these two areas (static

analysis and denotational semantics) in the context of security analysis of processes in the

π-calculus and spi calculus. Most of the static analysis work has concentrated on the use of

operational semantics. The use of a denotational framework would benefit both the theory

and implementation of static analysis in this area. Theoretically, concepts like least fixed

points are inherent in the nature of the denotational approach and, practically, the imple-

mentation of these concepts is straightforward in the functional programming paradigm,

which is closely related to the denotational approach.
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Chapter 3

Nominal Calculi

3.1 Introduction

The concept of a name as the main abstraction underlying different low-level details of

computing systems has resulted in the proliferation of a family of models of computation

known as nominal calculi . Many such models are process algebraic; programs are modelled as

processes equipped with operations to express their evolvement. The π-calculus has emerged

in recent years as an authoritative and highly expressive nominal calculus for the modelling of

mobile systems. In this chapter, we review the syntax and structural operational semantics

of the π-calculus and its cryptographic extension, the spi calculus. We give denotational

semantics for both languages that are based on domain theory.

3.2 The π-calculus

For years, the π-calculus has provided a powerful, yet simple, theoretical framework for

modelling and reasoning about mobility. The notion of a name constitutes the central

concept on which the calculus is based. Names are allowed to stand for channels as well as

data. Therefore, by sending and receiving names, processes can communicate information

to other processes and can also change the topology of their network. This view of mobility

is described as “the movement of links in the virtual space of linked processes” [96, II-8].

Several versions of the π-calculus exist, including the monadic synchronous version, which

was originally developed in [97]. In this version, communications occur by synchronising

channels and carry messages that are single names. Other versions exist such as the polyadic

π-calculus [95] and the asynchronous π-calculus [31, 76].
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3.2.1 Syntax

In the π-calculus, names constitute a countably infinite set x, y, z ∈ N possibly subscripted

with numbers, as in x1, x2 . . .. Processes P,Q ∈ P are built from names according to the

syntax of Figure 3.1.

P,Q := 0 Null

x(y).P Input action

x〈y〉.P Output action

if x = y then P else Q Conditional

(νx)P Restriction

P +Q Summation

P | Q Parallel composition

!P Replication

Figure 3.1: Syntax of the π-calculus.

Informally, these rules are described as follows. A null process, 0, is an inactive process

that cannot evolve any further. A guarded process may perform an input action, x(y).P ,

or an output action, x〈y〉.P , and then continues as the residue, P . For the case of x(y).P ,

a message z received along x will substitute y as in P [z/y]. A conditional process, if x =

y then P else Q, compares two names, x and y, and if they are the same, it continues as P ,

else it continues as Q. A restriction, (νx)P , constrains the scope of a name, x, to a process

P . The summation, P +Q, chooses non-deterministically between two processes, P and Q,

discarding the other. The parallel composition, P | Q, interleaves P and Q allowing for any

communications between the two processes to occur. Finally, the replication, !P , spawns as

many parallel copies of P as required by the context.

The standard notions of α-conversion and name substitution apply, as well as the notions

of free names, fn(P ), bound names, bn(P ), and the set of all the names of a process,

n(P ) = fn(P )∪ bn(P ). A name y is bound in (νy)P and x(y).P , otherwise it is free. Using

α-conversion, it is possible to have a set of bound names, bn(P ), that is totally distinct, i.e.

no two bound names of a process are the same. Also, α-conversion can be used to achieve

the requirement that bn(P )∩ fn(P ) = {}. In all the systems we deal with, these distinction

requirements are always assumed to hold.
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3.2.2 Structural Operational Semantics

We adopt the version of the structural operational semantics for the π-calculus as given in

[39]. The semantics is defined in terms of two relations: the structural congruence relation,

≡, and the labelled transition relation,
π−→.

The structural congruence relation is defined as the smallest equivalence on processes that

satisfies the following rules and is closed by the renaming of bound names (α-conversion):

- (P/≡, |,0) and (P/≡,+,0) are commutative monoids

- (νx)0 ≡ 0

- (νx)(νy)P ≡ (νy)(νx)P

- (νx)(P | Q) ≡ (P | (νx)Q), if x /∈ fn(P )

- !P ≡ P | !P

- if x = y then P else Q ≡

 P, if x = y

Q, otherwise

The labelled transition relation is defined by the set of rules of Figure 3.2 and closed by the

structural reshaping of processes. In these rules, π-transitions represent input actions, x(y),

free output actions, x〈y〉, bound output actions, x(y) (≡ (ν y)x〈y〉), and silent actions, τ .

(Out) x〈y〉.P x〈y〉−→ P

(In) x(y).P
x(y)−→ P

(Open) P
x〈y〉−→ P ′ ⇒ (ν y)P

x(y)−→ P ′ if x 6= y

(Res) P
π−→ P ′ ⇒ (ν x)P

π−→ (ν x)P ′ if x /∈ fn(π)

(Sum) P
π−→ P ′ ⇒ P +Q

π−→ P ′

(Par) P
π−→ P ′ ⇒ P | Q π−→ P ′ | Q

(Comm) P
x〈y〉−→ P ′, Q

x(z)−→Q′ ⇒ P | Q τ−→ P ′ | Q′[y/z]

(Close) P
x(y)−→ P ′, Q

x(z)−→Q′ ⇒ P | Q τ−→ (ν y)(P ′ | Q′[y/z])

Figure 3.2: Rules of the labelled transition relation in the π-calculus.

The relation is late in the sense that input variables are not instantiated until actual

communications take place (in Rules (Comm) and (Close)). The transition rules (Out)

and (In) describe transitions of processes guarded by output and input actions. Rule (Open)

changes a free output to a bound output by restricting the message of communication. The

(Res), (Sum) and (Par) rules preserve transitions under the restriction, summation and
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parallel composition operators. Finally, communications are described in rules (Comm) (free

output actions) and (Close) (bound output actions), where the external effect of a com-

munication appears as the silent action, τ . In rule (Close), the scope of the communicated

message is extruded to include the recipient process.

3.2.3 Denotational Semantics

Our starting point for the development of the denotational semantics is the set of predomain

equations given by Stark [121], which describe a process in terms of the most basic actions

it can perform, i.e. input, output and silent actions as well as deadlock (termination):

Pi ∼= 1 + P(Pi⊥ + In + Out) (3.1)

In ∼= N × (N → Pi⊥) (3.2)

Out ∼= N × (N × Pi⊥ +N → Pi⊥) (3.3)

Where Pi, In and Out represent the predomains of processes, input and output actions,

respectively, allowing for bound output actions. N is the predomain of names, and P(−)

is Plotkin’s powerdomain whose result is joined with the one-point domain, 1, following

Abramsky’s result [8, Def. 3.4]. This is necessary to be able to express deadlock (or termi-

nation). The domain of processes, Pi⊥, is then obtained by lifting Pi.

The binding effects inherent in input and bound output actions are expressed as functions

N → Pi⊥. These functions accept any name and instantiate a process (the residue) with

that name. Functions are also suitable since they allow for the renaming of bound names

(α-conversion) to take place without affecting the denotational meaning of a process. In

[121], a special function, (, is used to achieve a name freshness requirement in bound

output actions. As we explain later in this section, we use a special labelling mechanism in

the denotational semantics, which achieves a similar effect by maintaining that new copies

of bound names created are always distinct.

In addition to equations (3.1)–(3.3), the following mappings, leading into Pi⊥, are defined

by Stark [121], who based them on similar mappings introduced by Abramsky [8, Def. 3.3]:

∅ : 1→ Pi⊥ (3.4)

{| − |} : (Pi⊥ + In + Out)⊥ → Pi⊥ (3.5)

] : Pi⊥ × Pi⊥ → Pi⊥ (3.6)

new : (N → Pi⊥)→ Pi⊥ (3.7)

According to Abramsky [8, Def. 3.3], the above mappings are continuous (this was not

mentioned by Stark in [121]).
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The empty set map, ∅, denotes a deadlocked or terminated process. The singleton

map, {| − |}, is used to interpret elements of the input and output predomains as well

as processes guarded by silent actions as elements of Pi⊥. The choice map, ], is the

standard powerdomain union of two elements in Pi⊥. Finally, the new operation is useful

in interpreting the effects of restriction on processes. In [121], an extra mapping, par , is

added to interpret the effects of parallelism on processes. Our version of the denotational

semantics deals with parallelism by using a special multiset of processes running in parallel

with the interpreted process.

A solution to equations (3.1)–(3.3) and the associated mappings (3.4)–(3.7) is given

in [121] using symmetric monoidal closed functor categories. In our case, we adopt a more

concrete solution based on domain theory. Such a concrete solution is sufficient for the static

analysis framework defined in later chapters, where definitions of the concrete domains are

required without reference to the underlying abstract functorial meaning.

We now turn our attention to the definition of Pi⊥. Assuming K is the set underlying

any domain, then elements p, q ∈ K(Pi⊥) can be defined in two stages. First, elements

arising from ∅, {| − |} and ] are defined as in Figure 3.3.

Elements of In :

x ∈ K(N), λy.p ∈ K(N → Pi⊥) ⇒ (x, λy.p) ∈ K(In)

Elements of Out :

x, y ∈ K(N), p ∈ K(Pi⊥) ⇒ (x, y, p) ∈ K(Out)

x ∈ K(N), λy.p ∈ K(N → Pi⊥) ⇒ (x, λy.p) ∈ K(Out)

Elements of Pi⊥ :

{|⊥|} ∈ K(Pi⊥), ∅ ∈ K(Pi⊥)

p, q ∈ K(Pi⊥) ⇒ p ] q ∈ K(Pi⊥)

p ∈ K(Pi⊥) ⇒ {|tau(p)|} ∈ K(Pi⊥)

i ∈ K(In) ⇒ {|in(i)|} ∈ K(Pi⊥)

o ∈ K(Out) ⇒ {|out(o)|} ∈ K(Pi⊥)

Figure 3.3: Elements of In, Out and Pi⊥.

According to equation (3.2), elements of the predomain of input actions, In, are pairs

(x, λy.p), where the first element, x, stands for the channel of communication and the second

element is a function, λy.p, that accepts a name, z, and continues as a process, p[z/y] ∈ Pi⊥.
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According to equation (3.3), elements of Out are either free output actions, (x, y, p), or bound

output actions, (x, λy.p). A free output consists of the channel x, the free message y and the

residue p. A bound output, on the other hand, is expressed as the channel x and a function,

λy.p, where y is the message of communication bound to the residue p.

Building on elements of In and Out , elements of the summation Pi⊥ + In + Out are

ensured to be distinct by tagging each element with one of the appropriate tags tau, in and

out . By applying the singleton mapping, {| − |}, it is possible then to create elements of

the powerdomain Pi⊥ that are singleton sets containing elements of the summation Pi⊥ +

In + Out . The undefined process, {|⊥|}, is the bottom element necessary in order to perform

fixed-point calculations over the domain Pi⊥. Using ∅, it is possible to include the empty

set element in Pi⊥ [8, Def. 3.4]. Finally, ], combines two elements of Pi⊥.

The second stage consists of interpreting the effects of restriction on processes. This is

done by giving a concrete definition for new (3.7) over elements p ∈ Pi⊥, as in Figure 3.4.

new(λx.∅) = ∅

new(λx.{|⊥|}) = {|⊥|}

new(λx.{|in(y, λz.p)|}) =

 ∅, if x = y

{|in(y, λz.new(λx.p))|}, otherwise

new(λx.{|out(y, z, p)|}) =


∅, if x = y

{|out(y, λz.p)|}, if x = z 6= y

{|out(y, z,new(λx.p))|}, otherwise

new(λx.{|out(y, λz.p)|}) =

 ∅, if x = y

{|out(y, λz.new(λx.p))|}, otherwise

new(λx.{|tau(p)|}) = {|tau(new(λx.p))|}

new(λx.(p1 ] p2)) = new(λx.p1) ] new(λx.p2)

Figure 3.4: The definition of new for the π-calculus.

In general, new captures deadlocked situations arising from the attempt to communicate

over restricted non-extruded channels. It also turns a free output action into a bound output

action once a restricted message is directly sent over a channel (scope extrusion). In all the

other cases, restriction has no effect and it is simply passed to the residue or distributed

over the choice operation.

After fully defining elements of the domain Pi⊥, it is possible to denote the meaning

of processes in the π-calculus in terms of these elements. For a process, P , we define the

semantic function Sπ([P ]) ρ φS ∈ Pi⊥ by the set of rules of Figure 3.5. An earlier version of

39



the semantics was given in [14], based on Stark’s original categorical solution.

(Sπ1) Sπ([0]) ρ φS = ∅

(Sπ2) Sπ([x(y).P ]) ρ φS = {|in(ϕS(φS , x), λy.Rπ([{|P |}ρ]) φS)|}

(Sπ3) Sπ([x〈y〉.P ]) ρ φS =

(
⊎

x′(z).P ′∈ρ
{|tau(p)|} ) ] {|out(ϕS(φS , x), ϕS(φS , y),Rπ([{|P |}ρ]) φS)|}

where, p = Rπ([{|P |}ρ ]ρ ρ[P ′/x′(z).P ′]]) φS [z 7→ ϕS(φS , y)]

if, ϕS(φS , x) = ϕS(φS , x
′)

(Sπ4) Sπ([if x = y then P else Q]) ρ φS = Rπ([{|P |}ρ ]ρ ρ]) φS , if ϕS(φS , x) = ϕS(φS , y)

Rπ([{|Q|}ρ ]ρ ρ]) φS , otherwise

(Sπ5) Sπ([P +Q]) ρ φS = Rπ([{|P |}ρ ]ρ ρ]) φS ] Rπ([{|Q|}ρ ]ρ ρ]) φS

(Sπ6) Sπ([P | Q]) ρ φS = Rπ([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φS

(Sπ7) Sπ([(νx)P ]) ρ φS = new(λx.Rπ([{|P |}ρ ]ρ ρ]) φS)

(Sπ8) Sπ([!P ]) ρ φS = Fπ(−1)

where, Fπ(n) = let p1 = Sπ([
n∏
i=1

P [bni(P )/bn(P )] ]) ρ φS in

let p2 = Sπ([
n+2∏
i=1

P [bni(P )/bn(P )] ]) ρ φS in

if p1 = p2 then p1 else Fπ(n+ 1)

and, bni(P ) = {xi | x ∈ bn(P )}

(Rπ0) Rπ([ρ]) φS =
⊎
P∈ρ
Sπ([P ]) (ρ\{|P |}ρ) φS

Figure 3.5: The denotational semantics of the π-calculus.

The multiset, ρ, contains all processes composed in parallel with the analysed process,

P . The standard singleton, {|− |}ρ : P → ℘(P), and the multiset union, ]ρ : ℘(P)×℘(P)→

℘(P), are special mappings defined over ρ and should not be confused with {| − |} and ]

defined earlier in (3.5) and (3.6). The special environment, φS : N → N⊥, maps a name

to another name that substitutes it in the semantics. In fact, this environment will hold

substitutions of input parameters by messages received during communications. Since the

standard denotational semantics is a precise semantics, an input parameter can only be

mapped to, at most, one name in any possible choice of control flow (i.e. in any side of ]).

The ϕS : (N → N⊥)×N → N function is used to retrieve the true value of a name, x,
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given substitutions recorded in φS :

ϕS(φS , x) =

 z, if φS(x) = z

x, otherwise, when φS(x) = ⊥

The meaning of the composed processes in ρ is given by rule (Rπ0) as the summation of

the individual meaning of each of the composed processes. The concrete semantics of each

process construct is defined by the cases of rules (Sπ1–Sπ8). Rule (Sπ1) interprets the

meaning of a null process directly as the empty set map, ∅. Rules (Sπ2) and (Sπ3) deal

with the cases of processes guarded by input and output actions after which the residues

are composed with elements of the ρ multiset. In (Sπ3), any communications that may take

place between the output action and appropriate input actions guarding processes in ρ are

taken into consideration and φS is updated accordingly. The interpretation is a summation

of all such communications and the no-communication case. This preserves the associativity

property of the parallel composition operator, P | Q.

Rule (Sπ4) interprets conditional statements based on matching the values of names x

and y returned by ϕS . Depending on the values of these names, the equality condition will

either hold or not, hence determining the process composed with ρ. Rule (Sπ5) interprets

separately each of the processes in a choice as composed with processes in ρ and then

distributes the choice over the two results. Rule (Sπ6) is straightforward allowing for two

parallel processes to be composed with the rest of processes in ρ. Rule (Sπ7) interprets the

meaning of restriction using the new operation, defined earlier in Figure 3.4.

Finally, rule (Sπ8) interprets a replicated process, !P , by calculating the special function,

Fπ : N → Pi⊥, starting from the bottom number, n = −1, which computes the bottom

element, Sπ([
−1∏
i=1

P [bni(P )/bn(P )] ]) ρ φS = {|⊥|}. The calculation continues by incrementing

n until the condition of the if -statement holds true. In other words, the least fixed-point is

reached. Due to the fact that the semantic domain, Pi⊥, is infinite, this calculation is not

guaranteed to terminate at a finite number, n.

A labelling mechanism is also used in the rule to perform α-conversion on the spawned

copies, P , by subscripting all the bound names of P . The renaming is necessary to maintain

the distinction of bound names from other bound and free names. Hence, input parameters

recorded in φS can be mapped to at most one name. It is interesting to note that the

compositionality rule of the denotational semantics is preserved under this α-conversion,

since the resulting process on the right side of the rule, P [bni(P )/bn(P )], is still a subprocess

of the replication !P , by being structurally equivalent to the subprocess, P . In fact, the

substitution, P [bni(P )/bn(P )], will only affect bound variables of the λ-abstractions in

rules (Sπ2) and (Sπ7), leaving the denotational meaning as given by these two rules intact.
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To relate the denotational semantics of the π-calculus to its structural operational se-

mantics, the following theorem states that the elements of the domain of processes, Pi⊥,

reflect and preserve transitions in the structural operational semantics.

Theorem 1 (Soundness and Adequacy of Pi⊥ w.r.t. transitions)

The interpretation of processes in Pi⊥ is sound and adequate with respect to transitions in

the structural operational semantics of the π-calculus.

Proof . The soundness property relies on the ability of semantic elements to match transitions

in the operational model:

P
x〈y〉−→Q ⇒ out(x, y,Sπ([Q]) ρ φS) ∈ Sπ([P ]) ρ φS

P
x(y)−→Q ⇒ out(x, λy.Sπ([Q]) ρ φS) ∈ Sπ([P ]) ρ φS

P
x(y)−→Q ⇒ in(x, λy.Sπ([Q]) ρ φS) ∈ Sπ([P ]) ρ φS

P
τ−→Q ⇒ tau(Sπ([Q]) ρ φS) ∈ Sπ([P ]) ρ φS

On the other hand, adequacy requires that the semantic transitions be mapped correctly to

the operational model:

out(x, y, q) ∈ Sπ([P ]) ρ φS ⇒ ∃Q : P
x〈y〉−→Q ∧ Sπ([Q]) ρ φS = q

out(x, λy.q) ∈ Sπ([P ]) ρ φS ⇒ ∃Q : P
x(y)−→Q ∧ Sπ([Q]) ρ φS = q

in(x, λy.q) ∈ Sπ([P ]) ρ φS ⇒ ∃Q : P
x(y)−→Q ∧ Sπ([Q]) ρ φS = q

tau(q) ∈ Sπ([P ]) ρ φS ⇒ ∃Q : P
τ−→Q ∧ Sπ([Q]) ρ φS = q

Both these properties can be shown to hold for the model of Pi⊥. Soundness can be

proven by showing that the rules of the denotational semantics respect rules of the structural

operational semantics, whereas adequacy can be proven by defining a formal approximation

relation, p C P , between elements p ∈ Pi⊥ and processes P ∈ P. Such a relation is often

used in adequacy proofs for the λ-calculus (for example, as in [109]). �

3.3 The Spi Calculus

Of the many extensions that have been proposed to the π-calculus, the spi calculus remains

one of the most popular in the security community. The original work introduced in [5]

extended the language of the π-calculus with cryptographic primitives allowing processes to

send and receive private information over public channels in a secure manner. This implies

that processes exhibit a message-processing behaviour in addition to the message-passing

behaviour inherited from the π-calculus.
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The denotational semantics we propose for the spi calculus builds on an extension of

Stark’s predomain equations for the π-calculus [121]. The extension is capable of handling

the complexity inherent in the communicated data structures as well as the possibility of

extruding multiple names through those structures.

3.3.1 Syntax

We review here the syntax of the spi calculus [5] without hashing functions. Unlike the

π-calculus, where names are the only terms, in the spi calculus, terms are divided into two

types: primitive and complex . The notion of primitive terms is a refined notion of names

that distinguishes between constants a, b, c, k, A,B,C . . . ∈ N that cannot be instantiated,

and variables x, y, z,X, Y . . . ∈ V that can be instantiated. We allow primitive terms to be

subscripted with numbers. Complex terms are obtained by applying cryptographic and tuple

creation operations. Based on this, one may define terms L,M,N ∈ Term and processes

P,Q ∈ P according to the syntax of Figure 3.6. We write k+ and k− to distinguish between

the public and private parts of a key pair. These parts are related by the fact that they can

reverse each other’s encrypting effects.

Informally, the syntactic rules are described as follows. A null process, 0, is incapable

of evolving any further. An input guard, M(x).P , allows for a process to input a message,

N , over a channel defined by M and continues as the residue P [N/x]. An output guard,

M〈N〉.P , allows a process to send a message, N , over the channel defined byM and continues

as P . Although the forms of the input/output actions allow for the generic use of terms

as channels, this is only valid for the cases where the term is a name or a variable that is

instantiated to a name. The same is required of keys, since keys are treated as names due to

their unguessable nature. The restriction, parallel composition, replication and conditional

processes are all inherited from the π-calculus.

A tuple splitting operation, let (x1, . . . , xn) = M in P else Q, attempts to split a term,

M , and binds the resulting components to local variables, x1, . . . , xn, in a process P .

However, if this fails (i.e. M has an incorrect arity), then a different process, Q, is

chosen. Secret-key decryption, case L of {x}N in P else Q, and public-key decryption,

case L of {[x]}N in P else Q, attempt to decrypt a term L with key N . If successful, the re-

sulting term is bound to a local variable x in some process, P , otherwise, a different process,

Q, is chosen. Similarly, the signature verification process, case L of [{x}]N in P else Q, at-

tempts to verify a term, L, using N and if successful, the resulting term is bound to a local

variable, x, in P . Otherwise, if the verification fails, a different process, Q, is chosen. For the
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M,N := Terms

x, y, z Variables

a, b, c Names

k+ Public key

k− Private key

(M1, . . . ,Mn) n-tuple

{M}N Secret-key encryption

{[M ]}N Public-key encryption

[{M}]N Digital signature

P,Q := Processes

0 Null

M(x).P Input guard

M〈N〉.P Output guard

(νa)P Restriction

P | Q Parallel composition

!P Replication

if M = N then P else Q Conditional

let (x1, . . . , xn) = M in P else Q Tuple splitting

case L of {x}N in P else Q Secret-key decryption

case L of {[x]}N in P else Q Public-key decryption

case L of [{x}]N in P else Q Signature verification

Figure 3.6: The syntax of the spi calculus.

sake of conciseness, we omit all the above else parts in the let and case process constructs

whenever Q = 0.

The standard notions of term substitution and α-conversion, as well as the free and bound

variables and free and bound names of processes and terms, fv(A), bv(A), fn(A), bn(A), all

apply as usual. We also use the notion of bound names and variables of a process, written

as bnv(P ) = bn(P )∪bv(P ). A process P or a term M is closed if fv(P ) = {} or fv(M) = {}.

Henceforth, we shall only deal with closed processes and closed terms. Moreover, we only

consider systems whose bound names and bound variables are initially distinct from each

other and from the set of free names of the particular process.

44



3.3.2 Structural Operational Semantics

The structural operational semantics of the spi calculus is a direct extension of the structural

operational semantics of the π-calculus given in Section 3.2.2. The structural congruence

relation, ≡, is defined in a similar manner to before, with the exceptions that the restriction

operator is only applicable to names, and the commutative monoid (P/≡,+,0) disappears.

The structural congruence relation is defined as the smallest equivalence, closed by the

renaming of bound names and variables (α-conversion), that satisfies the following rules:

- (P/≡, |,0) is a commutative monoid

- (ν a)0 ≡ 0

- (ν a)(ν b)P ≡ (ν b)(ν a)P

- (ν a)(P | Q) ≡ (P | (ν a)Q) if a /∈ fn(P )

- !P ≡ P | !P

- if M = N then P else Q ≡

 P, if M = N

Q, if M 6= N

- let (x1, . . . , xn) = L in P else Q ≡


P [M1/x1, . . . ,Mn/xn],

if L = (M1, . . . ,Mn)

Q, otherwise

- case L of {x}k in P else Q ≡

 P [M/x], if L = {M}k
Q, otherwise

- case L of {[x]}k− in P else Q ≡

 P [M/x], if L = {[M ]}k+

Q, otherwise

- case L of [{x}]k+ in P else Q ≡

 P [M/x], if L = [{M}]k−

Q, otherwise

The labelled transition relation,
sπ−→, is defined by the set of rules of Figure 3.7, closed

by the structural congruence of processes. sπ-transitions include input actions, m(x), free

output actions, m〈N〉, bound output actions, (ν n1, . . . , ν nk)m〈N〉 (where {n1, . . . , nk} ⊆

fn(N)) and silent actions, τ . The rules are described as follows. Rules (Out) and (In)

express free output and input transitions. Rule (Open) transforms a free output to a bound

output by restricting names appearing free in the message of communication. Rules (Res)
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(Out) m〈N〉.P m〈N〉−→ P

(In) m(x).P
m(x)−→ P

(Open) P
m〈N〉−→ P ′ ⇒ (ν n1, . . . , ν nk)P

(ν n1,...,ν nk)m〈N〉−→ P ′ if m /∈ {n1, . . . , nk}

and {n1, . . . , nk} ⊆ fn(N)

(Res) P
sπ−→ P ′ ⇒ (ν n)P

sπ−→ (ν n)P ′ if n /∈ fn(sπ)

(Par) P
sπ−→ P ′ ⇒ P | Q sπ−→ P ′ | Q

(Comm) P
m〈N〉−→ P ′, Q

m(x)−→ Q′ ⇒ P | Q τ−→ P ′ | Q′[N/x]

(Close) P
(ν n1,...,ν nk)m〈N〉−→ P ′, Q

m(x)−→ Q′ ⇒ P | Q τ−→ (ν n1, . . . , ν nk)(P ′ | Q′[N/x])

Figure 3.7: Rules of the labelled transition relation in the spi calculus.

and (Par) state that transitions are preserved under the restriction and parallel composi-

tion operators, provided that the side conditions are satisfied. Finally, communications are

carried out in rules (Comm) and (Close) for the cases of free and bound output actions,

respectively. The external effects of these communications appear as silent actions, τ .

3.3.3 Denotational Semantics

The denotational semantics of the spi calculus builds on an extension of Stark’s predomain

equations for the π-calculus (Section 3.2.3). The extended equations are as follows:

Spi ∼= 1 + P(Spi⊥ + In + Out) (3.8)

In ∼= N × (T → Spi⊥) (3.9)

Out ∼= N × (T × Spi⊥ +N → . . . N → (T × Spi⊥)) (3.10)

T ∼= N + Sec + Pub + Sig + Pair (3.11)

Sec ∼= T ×N (3.12)

Pub ∼= T ×N (3.13)

Sig ∼= T ×N (3.14)

Pair ∼= T × . . .× T (3.15)

Where Spi , In and Out are the predomains of processes, input and output actions (including

bound output actions), respectively. N is the predomain of names and T is the predomain

of terms defined using N and the predomains of secret-key ciphertexts, SEC, public-key

ciphertexts, PUB, digital signatures, SIG, and finite tuples, TUP . We do not include in

the equations a predomain of variables, V , since we only deal with closed terms and processes.

All the cryptographic terms are expressed as pairs consisting of a term (plaintext) and a
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name (key). Finally, P(−) is Plotkin’s powerdomain operation, with the single element

domain, 1, representing deadlocked or terminated processes joined to the result of P(−) as

in [8, Def. 3.4]. Lifting Spi , to give Spi⊥, results in the domain of processes.

In addition to the presence of a predomain of terms, there are other differences between

these equations and equations (3.1)–(3.3) of Section 3.2.3. First, input actions contain a

functional element, T → Spi⊥, that is capable of being instantiated with any term, not just

names. Second, free output actions are also equipped to send messages that are generic

terms, T . Moreover, bound output actions are expressed as a finite number of functions,

N → . . . N → (T × Spi⊥), that take as arguments names and yield other functions until

eventually resulting in a pair representing the message of communication, T , and the residual

process, Spi⊥. This expresses the fact that bound outputs in the spi calculus can extrude

the scope of multiple names, not just one name, as is the case with the π-calculus.

A number of continuous mappings leading into Spi⊥ are also defined, to express the

manner in which semantic elements are constructed [8, Def. 3.3]:

∅ : 1→ Spi⊥ (3.16)

{| − |} : (Spi⊥ + In + Out)⊥ → Spi⊥ (3.17)

] : (Spi⊥ × Spi⊥)→ Spi⊥ (3.18)

new : (N → Spi⊥)→ Spi⊥ (3.19)

The description of these mappings is largely similar to their counterparts in the denotational

model for the π-calculus (Section 3.2.3). The empty set map, ∅, constructs deadlocked or

terminated processes. The singleton set map, {| − |}, constructs elements of the domain

Spi⊥ resulting from input, output and silent actions, as well as the bottom element, {|⊥|}.

The standard powerdomain union, ], represents non-deterministic choice, and finally, new

is used to interpret the effects of restricting a single name to a process.

We construct a concrete solution for equations (3.8)–(3.15) that is based on domain

theory. To specify elements of Spi⊥, it is necessary to determine elements of all the other

semantic domains. We start with the predomain of terms, T . Assuming K is the set

underlying any domain, then elements t ∈ K(T ) are defined in Figure 3.8. Due to the

assumption that cryptographic functions are total over their arguments, which are of the

appropriate type (e.g. keys are names), the predomain of terms, T , appears to be flat with

discrete structure and no bottom elements. The disjoint union guarantees that cryptographic

terms with similar elements are distinguished from each other as well as from the 2-element

tuples (pairs). This is achieved by tagging the cryptographic terms with appropriate tags,

sec, pub and sig , while leaving ordinary pairs without tags.
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a, b, c . . . ∈ K(N) Names

t ∈ K(T ), k ∈ K(N) ⇒ (t, k) ∈ K(SEC) Secret-key ciphertexts

t ∈ K(T ), k+ ∈ K(N) ⇒ (t, k+) ∈ K(PUB) Public-key ciphertexts

t ∈ K(T ), k− ∈ K(N) ⇒ (t, k−) ∈ K(SIG) Digital signatures

t1, . . . , tn ∈ K(T ) ⇒ (t1, . . . , tn) ∈ K(TUP ) Tuples

K(N + SEC + PUB + SIG+ TUP ) = Terms

{a | a ∈ N} ∪ {sec(t, k) | (t, k) ∈ SEC} ∪

{pub(t, k+) | (t, k+) ∈ PUB} ∪

{sig(t, k−) | (t, k−) ∈ SIG} ∪

{(t1, . . . , tn) | (t1, . . . , tn) ∈ TUP}

Figure 3.8: Elements of the predomain of terms T .

Elements of In :

a ∈ K(N), λy.p ∈ K(T → Spi⊥) ⇒ (a, λy.p) ∈ K(In)

Elements of Out :

a ∈ K(N), t ∈ K(T ), p ∈ K(Spi⊥) ⇒ (a, t, p) ∈ K(Out)

a ∈ K(N), λn1 . . . λnm.(t, p) ∈

K(N →1 . . . N →m (T × Spi⊥)) ⇒ (a, λn1 . . . λnm.(t, p)) ∈ K(Out)

Elements of Spi⊥ :

{|⊥|} ∈ K(Spi⊥), ∅ ∈ K(Spi⊥)

p, q ∈ K(Spi⊥) ⇒ p ] q ∈ K(Spi⊥)

p ∈ K(Spi⊥) ⇒ {|tau(p)|} ∈ K(Spi⊥)

i ∈ K(In) ⇒ {|in(i)|} ∈ K(Spi⊥)

o ∈ K(Out) ⇒ {|out(o)|} ∈ K(Spi⊥)

Figure 3.9: Elements of In, Out , and Spi⊥.

From these semantic terms, the concrete elements of the predomains of In and Out are

given leading to a solution of equations (3.8)–(3.10) specifying elements of the domain of

processes, Spi⊥. First, elements arising from ∅, {| − |} and ] are defined in Figure 3.9.

The effects of restricting a name to a process are interpreted by giving a concrete defini-

tion of new in terms of the simpler elements arising from ∅, ] and {| − |}. This definition is
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shown in Figure 3.10. The main difference in the definition of new from that of Figure 3.4

(Section 3.2.3) is that a bound output is allowed to have a finite number of bound names,

not just a single name. Apart from terminating communications over fresh non-extruded

channels and turning a free output action into a bound output action, restriction has no

other effects and it is simply passed to the residue or distributed over the choice operator.

new(λn.∅) = ∅

new(λn.{|⊥|}) = {|⊥|}

new(λn.{|in(a, λx.p)|}) = ∅, if a = n

{|in(a, λx.new(λn.p))|}, otherwise

new(λn.{|out(a, t, p)|}) =
∅, if a = n

{|out(a, λn.(t, p))|}, if n ∈ n(t) and n 6= a

{|out(a, t,new(λn.p))|}, otherwise

new(λn.{|out(a, λm1 . . . λmk.(t, p))|}) =
∅, if a = n

{|out(a, λn.λm1 . . . λmk.(t, p))|}, if n ∈ n(t) and n 6= a

{|out(a, λm1 . . . λmk.(t,new(λn.p)))|}, otherwise

new(λn.{|tau(p)|}) = {|tau(new(λn.p))|}

new(λn.(p1 ] p2)) = new(λn.p1) ] new(λn.p2)

Figure 3.10: The definition of new for the spi calculus.

The denotational semantics for the spi calculus can now be given as a semantic function

Sspi([P ]) ρ φS ∈ Spi⊥ defined by the set of rules of Figure 3.11. The multiset, ρ, is used

to hold processes composed in parallel with the analysed process, where rule (Rspi0) is

used to interpret the contents of ρ. The environment, φS : V → T⊥, where V is the

predomain of variables, captures any term substitutions that occur in the semantics. The

special function, ϕS : (V → T⊥) × Term → T , returns the semantic value of a term, given

substitutions recorded by φS :
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(Sspi1) Sspi([0]) ρ φS = ∅

(Sspi2) Sspi([M(y).P ]) ρ φS = {|in(ϕS(φS ,M), λy.Rspi([{|P |}ρ]) φS)|}

where, ϕ(φE ,M) ∈ N

(Sspi3) Sspi([M〈L〉.P ]) ρ φS =⊎
M′(z).P ′∈ρ

{|tau(Rspi([{|P |}ρ ]ρ ρ[P ′/M ′(z).P ′]]) φS [z 7→ ϕS(φS , L)]|}

] {|out(ϕS(φS ,M), ϕS(φS , L),Rspi([{|P |}ρ]) φS)|}

where, ϕS(φS ,M) = ϕS(φS ,M
′) ∈ N

(Sspi4) Sspi([(νa)P ]) ρ φS = new(λa.Rspi([{|P |}ρ ]ρ ρ]) φS)

(Sspi5) Sspi([P | Q]) ρ φS = Rspi([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φS

(Sspi6) Sspi([!P ]) ρ φS = Fspi(−1)

where, Fspi(n) = let p1 = Sspi([
n∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φS in

let p2 = Sspi([
n+2∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φS = in

if p1 = p2 then p1 else Fspi(n+ 1)

and, bnv i(P ) = {xi | x ∈ bnv(P )}

(Sspi7) Sspi([if M = L then P else Q]) ρ φS = Rspi([{|P |}ρ ]ρ ρ]) φS , if ϕS(φS ,M) = ϕS(φS , L)

Rspi([{|Q|}ρ ]ρ ρ]) φS , otherwise

(Sspi8) Sspi([let (x1, . . . , xn) =M in P else Q]) ρ φS =
Rspi([{|P |}ρ ]ρ ρ]) φ′S , if ϕS(φS ,M) = (t1, . . . , tn)

where, φ′S = φS [x1 7→ t1, . . . , xn 7→ tn]

Rspi([{|Q|}ρ ]ρ ρ]) φS , otherwise

(Sspi9) Sspi([case L of {x}N in P else Q]) ρ φS =
Rspi([{|P |}ρ ]ρ ρ]) φ′S , if ϕS(φS , L) = sec(t, k) and ϕS(φS , N) = k

where, φ′S = φS [x 7→ t]

Rspi([{|Q|}ρ ]ρ ρ]) φS , otherwise

(Sspi10) Sspi([case L of {[x]}N in P else Q]) ρ φS =
Rspi([{|P |}ρ ]ρ ρ]) φ′S , if ϕS(φS , L) = pub(t, k+) and ϕS(φS , N) = k−

where, φ′S = φS [x 7→ t]

Rspi([{|Q|}ρ ]ρ ρ]) φS , otherwise

(Sspi11) Sspi([case L of [{x}]N in P else Q]) ρ φS =
Rspi([{|P |}ρ ]ρ ρ]) φ′S , if ϕS(φS , L) = sig(t, k−) and ϕS(φS , N) = k+

where, φ′S = φS [x 7→ t]

Rspi([{|Q|}ρ ]ρ ρ]) φS , otherwise

(Rspi0) Rspi([ρ]) φS =
⊎
P∈ρ
Sspi([P ]) (ρ\{|P |}ρ) φS

Figure 3.11: The denotational semantics of the spi calculus.
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∀φS ,M : ϕS(φS ,M) =



φS(M), if M ∈ V

M, if M ∈ N

sec(ϕS(φS ,M
′), ϕS(φS , N)), if M = {M ′}N

pub(ϕS(φS ,M
′), ϕS(φS , N)), if M = {[M ′]}N

sig(ϕS(φS ,M
′), ϕS(φS , N)), if M = [{M ′}]N

(ϕS(φS ,M1), . . . , ϕS(φS ,Mn)), if M = (M1, . . . ,Mn)

Note that since we only deal with closed terms, the case where M = x ∈ V and φS(x) = ⊥

will never be encountered (open terms).

The description of rules (Sspi1)–(Sspi11) is as follows. Rule (Sspi1) interprets the mean-

ing of a null process as the empty set mapping, ∅. Rules (Sspi2) and (Sspi3) deal with

processes guarded with input and output actions, respectively. The rule for output actions,

(Sspi3), considers communications between the output channel and appropriate input chan-

nels guarding processes in ρ. The φS is updated appropriately with semantic elements.

Rule (Sspi4) uses the new mapping to interpret the meaning of a restriction. Rule (Sspi5)

interprets directly parallel composition by the addition of the parallel subprocesses to ρ.

Finally, rule (Sspi6) interprets a replicated process, !P , by calculating the higher-order

function, Fspi : N→ Spi⊥, starting from the bottom number, n = −1, which computes the

bottom semantic element, Sspi([
−1∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φS = {|⊥|}. The value of n is

incremented in each iteration until the condition of the if -statement holds true, or in other

words, the least fixed-point is reached. Due to the fact that the semantic domain, Spi⊥,

is infinite, this calculation may not terminate within finite limits. The rule also uses the

labelling mechanism to rename all the bound variables and names of the spawned processes

by subscripting those variables and names with a number signifying each spawned copy.

Since this renaming of bound variables and names is, in fact, α-conversion, the resulting

process on the right side of the rule is structurally equivalent to a subprocess of the replication

on the left side. This preserves the compositionality of the denotational semantics since the

α-converted process is still a subprocess of the replication.

The rest of the rules rely on the meaning of terms as held by the φS environment before

resolving the analysed process. In rule (Sspi7), the meaning of two terms is compared, and

depending on the result, one of two processes is chosen and added to ρ. Rules (Sspi8)–

(Sspi11) deal with tuple splitting and cryptographic processes. The result of the tuple

splitting and cryptographic operations are used to update the φS with the appropriate

semantic terms. A residual process, P , signifying the success of the operation is also added

to ρ. In case an operation fails, an alternative process, Q, is chosen and added to ρ. We can

now state the following theorem.
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Theorem 2 (Soundness and Adequacy of Spi⊥ w.r.t. transitions)

The interpretation of processes in Spi⊥ is sound and adequate with respect to transitions in

the spi calculus.

Proof . The soundness property relies on the ability of semantic elements p to match tran-

sitions in the operational model. Hence:

P
m〈N〉−→ Q ⇒ out(m,ϕS(N,φS),Sspi([Q]) ρ φS) ∈ Sspi([P ]) ρ φS

P
(ν n1,...,ν nk)m〈N〉−→ Q ⇒ out(m,λn1 . . . λnk.(ϕS(N,φS),Sspi([Q]) ρ φS)) ∈ Sspi([P ]) ρ φS

P
m(x)−→ Q ⇒ in(m,λx.Sspi([Q]) ρ φS) ∈ Sspi([P ]) ρ φS

P
τ−→Q ⇒ tau(Sspi([Q]) ρ φS) ∈ Sspi([P ]) ρ φS

On the other hand, adequacy requires that the semantic transitions must be mapped cor-

rectly to the operational model. Hence:

out(m, t, q) ∈ Sspi([P ]) ρ φS ⇒ ∃Q : P
m〈N〉−→ Q ∧ ϕS(N,φS) = t ∧ Sspi([Q]) ρ φS = q

out(m,λn1 . . . λnk.(t, q)) ∈ Sspi([P ]) ρ φS ⇒ ∃Q : P
(ν n1,...,ν nk)m〈N〉−→ Q ∧ ϕS(N,φS) =

t ∧ Sspi([Q]) ρ φS = q

in(m,λx.q) ∈ Sspi([P ]) ρ φS ⇒ ∃Q : P
m(x)−→ Q ∧ Sspi([Q]) ρ φS = q

tau(q) ∈ Sspi([P ]) ρ φS ⇒ ∃Q : P
τ−→Q ∧ Sspi([Q]) ρ φS = q

The proof of soundness proceeds by induction on the structure of the denotational semantics,

whereas the proof of adequacy requires a formal approximation relation, p C P , between

elements p ∈ Spi⊥ and processes P ∈ P. �

3.4 Conclusion

In this section, we have given an overview of the syntax and structural operational semantics

of the π-calculus and its cryptographic extension, the spi calculus. The main contribution of

this chapter has been in constructing a denotational semantics for the π-calculus based on a

domain-theoretic solution of the predomain equations given by Stark in [121]. We have also

modified these equations to be able to model processes in the spi calculus by the addition of

an extra predomain for complex terms, T , to be able to model ciphertexts, digital signatures

and tuples. We also allow multiple-name extrusions to occur in bound output actions.

The standard denotational semantics constitutes a concrete basis for building the abstract

interpretation in the next chapter. In particular, the semantic domains will be extended

to include elements that express term substitutions occurring in processes as a result of

communications (π-calculus and spi calculus) and cryptographic operations (spi calculus).
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Chapter 4

Abstract Interpretation

4.1 Introduction

After defining the standard denotational semantics of the π-calculus and the spi calculus

in the previous chapter, we use these semantics as the basis for constructing abstract in-

terpretations for the two languages in this chapter. The approach we follow is based on

extending the standard semantics of a language to obtain a correct non-standard meaning

that captures the property of interest, in this case, term substitution. Our definition of the

correctness property of the non-standard semantics with respect to the standard semantics

is that the standard meaning of a process be extractable from its non-standard meaning.

The next step involves the introduction of a suitable abstraction (approximation) that

restricts the semantic domain to a finite size, thereby allowing the termination of any least

fixed-point calculations. This abstraction is required to be safe with respect to the concrete

non-standard semantics; a term substitution occurring in the concrete semantics will neces-

sarily be captured in an abstract manner by the abstract semantics. However, due to the

imprecise nature of abstractions, false positives can appear in the final results. For example,

in x〈s〉 | xx(y) | z〈w〉 | zz(u), if, x = xx = t1 and z = zz = t2, then we have in the standard

semantics that s can only substitute y, and w can only substitute u. However, abstracting

the above values, such that x = xx ∈ {t1, t2} and z = zz ∈ {t1, t2}, then s may substitute y

or u, and similarly, w may substitute y or u. This is because the abstraction introduces the

scenario where x = zz and z = xx, which is impossible in the concrete semantics.

Finally, we give specifications of examples of protocols specified in the languages of the

π-calculus and the spi calculus and apply the abstract interpretation to these systems to

capture the property of term substitutions.
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4.2 The π-calculus

As we described in the previous chapter, the main notion of behaviour in the π-calculus is

name passing, where processes communicate by exchanging names over channels allowing

the overall topology of the network to evolve over time. Analysing this behaviour offers

valuable information about the different program properties in general (e.g. control and

data flow information), and about security properties in particular (e.g. processes obtaining

private information and processes obtaining inauthentic messages).

The standard semantic domain of the previous chapter was defined over the process

domain, Pi⊥. The information contained in this domain is not sufficient to reason about

name substitutions. Therefore, we extend the domain to include mappings from the set

of input parameters of a specification to sets of names representing possible instantiations

of those parameters during process communications. However, due to the possibility of

processes having infinite traces in Pi⊥ and their ability to create infinite numbers of instances

of bound names, an abstraction is required to safely ensure the termination of the semantics.

The main idea underlying this abstraction is to place an upper limit on the number of copies

of each name that can appear in the abstract meaning of a process. An earlier version of

the work presented in this section can be found in [15].

4.2.1 Non-standard Semantics

To trace name substitutions during the evolution of processes in the π-calculus, we define

the special environment φE : N → ℘(N), which maps each name of a process to a set of

names that may instantiate that name during runtime. The null environment, φE0, maps

every name to the empty set:

∀x ∈ N : φE0(x) = {}

When computing the meaning of a process, P , elements of the set bn(P ), representing input

parameters, will obtain values in φE whenever communications take place. For example, if a

message, z, is received over a channel, x, in an input action, x(y).P , then z will be added to

the set of names given by φE(y). The fact that the semantics is precise, i.e. every instance

of a bound name is distinguished from every other instance in the semantics, means that

the set φE(y) will be at most a singleton set per choice of control flow.

As a result of these substitutions, a domainD⊥ = N → ℘(N) is formed with the following

partial ordering relation, based on subset inclusion:

∀φE1, φE2 ∈ D⊥ : φE1 vD⊥ φE2 ⇔ ∀x ∈ N : φE1(x) ⊆ φE2(x)
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with the bottom element of D⊥ being the null environment, φE0. The union of φE environ-

ments, ∪φ, can be defined in terms of the standard union, ∪, as follows:

∀φE1, φE2 ∈ D⊥, x ∈ N : (φE1 ∪φ φE2)(x) = φE1(x) ∪ φE2(x)

The non-standard semantic domain is then the product Pi⊥ × D⊥ ordered pointwise on

its elements, with a bottom element, (⊥Pi⊥ ,⊥D⊥). Based on the domain Pi⊥ × D⊥, the

non-standard semantics of the π-calculus can be defined using the function Eπ([P ]) ρ φE ∈

Pi⊥ ×D⊥, shown in Figure 4.1.

The semantics utilises a multiset, ρ, to hold all processes in parallel with the analysed

process. The contents of this multiset are interpreted in rule (Rπ0), which uses the choice

mapping, ], to group the p ∈ Pi⊥ elements and the union of environments, ∪φ, to group

the φE ∈ D⊥ elements in the resulting semantic pair. The semantics also defines the special

function, ϕE : (N → ℘(N))×N → N , which retrieves the value of a name, x, given earlier

substitutions recorded by φE :

∀φE ∈ D⊥, x ∈ N : ϕE(φE , x) =

 z, if φE(x) = {z}

x, otherwise

The rest of the rules (Eπ1)–(Eπ8) are described informally as follows. The interpretation of

null processes in rule (Eπ1) is given as a pair expressing the empty set map and an unchanged

φE environment. Processes guarded by input and output actions are treated in the following

rules, (Eπ2) and (Eπ3), respectively. Possible communications between output actions and

the matching input actions are treated in rule (Eπ3), where the value of φE is updated

accordingly. As a result of the substitution in φE , the input parameter is removed from the

residue. Along with the fact that bound names are maintained distinct (rule (Eπ8)), this

results in the possibility of having a single substitution only per choice of control flow. To

indicate the presence of a communication, the silent action, tau, is added to the process.

Rule (Eπ4) deals with the conditional process comparing the values of two names. One

process or another is chosen to be added to ρ depending on whether the equality of the two

names holds or not. Rule (Eπ5) deals with the summation of processes, where elements of

the semantic pairs resulting from the non-standard interpretation of the two subprocesses

are related pointwise using the choice map, ], and the union of environments, ∪φ. Rule

(Eπ6) joins two parallel processes to the rest of parallel processes supplied by the ρ multiset.

In rule (Eπ7), the interpretation of restriction is carried out using the new map on the

process element of the resulting semantic pair. The φE element remains unchanged (since

internal communications are preserved under restrictions).
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(Eπ1) Eπ([0]) ρ φE = (∅, φE)

(Eπ2) Eπ([x(y).P ]) ρ φE = ({|in(ϕE(φE , x), λy.p′)|}, φE)

where, (p′, φ′E) = Rπ([{|P |}ρ]) φE
(Eπ3) Eπ([x〈y〉.P ]) ρ φE =

(
⊎

x′(z).P ′∈ρ
{|tau(p′)|} ] {|out(ϕE(φE , x), ϕE(φE , y), p′′)|},

⋃
φ

x′(z).P ′∈ρ
φ′E ∪φ φE)

if, ϕE(φE , x) = ϕE(φE , x
′)

where, (p′, φ′E) = Rπ([{|P |}ρ ]ρ ρ[P ′/x′(z).P ′]]) φE [z 7→ {ϕE(φE , y)}]

and, (p′′, φ′′E) = Rπ([{|P |}ρ]) φE
(Eπ4) Eπ([if x = y then P else Q]) ρ φE = Rπ([{|P |}ρ ]ρ ρ]) φE , if ϕE(φE , x) = ϕE(φE , y)

Rπ([{|Q|}ρ ]ρ ρ]) φE , otherwise

(Eπ5) Eπ([P +Q]) ρ φE = ((p′ ] p′′), (φ′E ∪φ φ′′E))

where, (p′, φ′E) = Rπ([{|P |}ρ ]ρ ρ]) φE

and, (p′′, φ′′E) = Rπ([{|Q|}ρ ]ρ ρ]) φE

(Eπ6) Eπ([P | Q]) ρ φE = Rπ([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φE

(Eπ7) Eπ([(νx)P ]) ρ φE = (new(λx.p′), φ′E)

where, (p′, φ′E) = Rπ([{|P |}ρ ]ρ ρ]) φE

(Eπ8) Eπ([!P ]) ρ φE = Fπ(−1)

where, Fπ(n) = let v1 = Eπ([
n∏
i=1

P [bni(P )/bn(P )] ]) ρ φE in

let v2 = Eπ([
n+2∏
i=1

P [bni(P )/bn(P )] ]) ρ φE in

if v1 = v2 then v1 else Fπ(n+ 1)

and, bni(P ) = {xi | x ∈ bn(P )}

(Rπ0) Rπ([ρ]) φE = (
⊎
P∈ρ

p′,
⋃
φ

P∈ρ
φ′E)

where, (p′, φ′E) = Eπ([P ]) (ρ\{|P |}ρ) φE

Figure 4.1: The non-standard semantics of the π-calculus.
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The rule for replication, (Eπ8), computes a special function, Fπ : N → Pi⊥ × D⊥,

starting at n = −1, which contains the bottom element, (⊥Pi⊥ ,⊥D⊥), and continues by

incrementing n, until it reaches a least fixed-point, at which the meaning v1 ∈ Pi⊥ × D⊥
cannot be increased any further. Due to the infinite nature of the non-standard semantic

domain, computing this fixed point is not guaranteed to terminate. Later, we discuss a

possible abstraction that maintains the computability of the least fixed-point while sacri-

ficing the precision of the semantics. Also, any spawned copies of !P are α-converted to

distinguish between the new copies of bound names. This α-conversion does not affect the

compositionality of the semantics since the process on the right side of the rule is still a

subprocess of the left side of the rule (up to α-conversion).

The following theorem states that the non-standard semantics of the π-calculus is correct

with respect to the standard denotational semantics introduced in the previous chapter.

Theorem 3 (Correctness of the Non-Standard Semantics)

∀P ∈ P : (Sπ([P ]) ρ φS = p) ∧ (Eπ([P ]) ρ φE = (p′, φ′E)) ⇒ p = p′

Proof . The proof is by induction over the structure of the rules of the standard and non-

standard semantics. �

Intuitively, the theorem states that for any process, P , it is possible to extract the

standard meaning of P , as interpreted by Sπ([P ]) ρ φS , from its non-standard meaning, as

interpreted by Eπ([P ]) ρ φE . In other words, the former is equivalent to the first element of

the pair generated by the latter.

4.2.2 Abstract Semantics

As we mentioned earlier in the previous section, the non-standard semantics of the π-calculus

contains least fixed-point calculations that may not be computable (in the rule for replica-

tion). To obtain a computable semantics, whose termination is guaranteed, a safe abstraction

is required to remove the source of infinite growth in the semantic domain Pi⊥ ×D⊥. For

example, consider the following system:

!((νz)x〈z〉.P | x(y).Q)

As a result of the infinite communications within this system, its non-standard semantics

will yield (as part of its meaning) an infinite trace of silent actions tau(tau(tau(. . . as well

as a φE environment that maps every instance yj to {zj}, for j ∈ N.

To reduce the semantic domain to a finite level, we first assume a finite predomain

of tags, Tag , ranged over by t, t′ etc. Given a process, P , we place distinct tags on all
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messages of output actions of P . For example, tagging !(ν x)y〈x〉.y〈y〉.y(z).y〈z〉 results in

!(ν x)y〈xt〉.y〈yt′〉.y(z).y〈zt′′〉. Copies of tags are renamed by subscripting them with the

number of their copy. For example, the replication above can spawn two copies:

!(ν x)y〈xt〉.y〈yt′〉.y(z).y〈zt′′〉 |

(ν x1)y〈xt11 〉.y〈yt
′
1〉.y(z1).y〈zt

′′
1
1 〉 | (ν x2)y〈xt22 〉.y〈yt

′
2〉.y(z2).y〈zt

′′
2
2 〉

Furthermore, we define the function, value of ({t1, . . . , tn}) = {x1, . . . , xm}, which can be

applied to a set of tags, {t1, . . . , tn}, returning a set of names, {x1, . . . , xm}, tagged by those

tags. Hence, for the above process, we have that:

value of ({t, t1, t2, t′, t′1, t′2, t′′, t′′1 , t′′2}) = {x, x1, x2, y, z, z1, z2}

Next, we define the following abstraction for names and tags, which places an upper limit, k,

on the total number of copies of names and tags that can be captured. In general, selecting

k is non-decidable and relies, to a great extent, on user’s experience and the specific program

being analysed.

Definition 1 Define the abstraction function, αk : N× (N + Tag)→ (N ] + Tag]), by:

∀x ∈ (N + Tag), i, k ∈ N : αk(x) =

 xk, if x = xi and i > k

x, otherwise

Note that N ] = N\{xj | j > k} and Tag] = Tag\{tj | j > k}. Using abstracted names

and tags, we can define the abstract environment, φA : N ] → ℘(Tag]), mapping abstracted

input parameters to sets of abstracted tags whose names can possibly replace each input

parameter in the semantics. Due to the imprecise nature of the abstract semantics, φA(x)

may be larger than a singleton set. This imprecision results from the inability to distinguish

between the different copies of input parameters and tags beyond the kth copy.

The value of the integer constraint is dependent on the definition of the property we are

interested in and will determine the precision of the results of the abstract interpretation.

A uniform analysis (i.e. k = 1) is incapable of distinguishing between the different copies of

replicated processes and it is suitable for properties that remain uniform across the range of

copies of names. On the other hand, a flexible non-uniform analysis (i.e. k > 1) is suitable

for properties that require more precision, since the different copies of processes spawned

from a replication can be distinguished (by distinguishing their bound names and tags).

The abstract semantic domain, D]
⊥ = N ] → ℘(Tag]), is defined as the domain of φA

environments ordered by subset inclusion (with ∪φ defined as in the previous section):

∀φA1, φA2 ∈ D]
⊥ : φA1 vD]

⊥
φA2 ⇔ ∀x ∈ N ] : φA1(x) ⊆ φA2(x)

58



The bottom element, ⊥D]
⊥

, is the null environment, φA0, mapping every abstract name to

the empty set. Using D]
⊥, the abstract semantics of the π-calculus is defined as a function

Aπ([P ]) ρ φA ∈ D]
⊥, the rules of which are shown in Figure 4.2.

(Aπ1) Aπ([0]) ρ φA = φA

(Aπ2) Aπ([x(y).P ]) ρ φA = φA

(Aπ3) Aπ([x〈yt〉.P ]) ρ φA = (
⋃
φ

x′(z).P ′∈ρ
Rπ([{|P |}ρ ]ρ ρ[P ′/x′(z).P ′]]) φ′A) ∪φ φA

where, φ′A = φA[αk(z) 7→ φA(αk(z)) ∪ {αk(t)}]

if, ϕA(φA, x) ∩ ϕA(φA, x
′) 6= {}

(Aπ4) Aπ([if x = y then P else Q]) ρ φA = Rπ([{|P |}ρ ]ρ ρ]) φA, if, ϕA(φA, x) ∩ ϕA(φA, y) 6= {}

Rπ([{|Q|}ρ ]ρ ρ]) φA, otherwise

(Aπ5) Aπ([P +Q]) ρ φA = Rπ([{|P |}ρ ]ρ ρ]) φA ∪φ Rπ([{|Q|}ρ ]ρ ρ]) φA

(Aπ6) Aπ([P | Q]) ρ φA = Rπ([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φA

(Aπ7) Aπ([(νx)P ]) ρ φA = Rπ([{|P |}ρ ]ρ ρ]) φA

(Aπ8) Aπ([!P ]) ρ φA = Fπ(−1)

where, Fπ(n) = let φ1 = Aπ([
n∏
i=1

ren(P, i) ]) ρ φA in

let φ2 = Aπ([
n+2∏
i=1

ren(P, i) ]) ρ φA in

if φ1 = φ2 then φ1 else Fπ(n+ 1)

and, ∀x ∈ bn(P ), yt ∈ n(P ) : ren(P, i) = (P [xi/x])[yti/yt]

(Rπ0) Rπ([ρ]) φA =
⋃
φ

P∈ρ
Aπ([P ]) (ρ\{|P |}ρ) φA

Figure 4.2: The abstract semantics of the π-calculus.

The multiset, ρ, holds as usual all the processes composed in parallel with the interpreted

process. The function, ϕA : (N ] → ℘(Tag]))×N → ℘(N ]) is defined as follows:

ϕA(φA, x) = ϕ′A(φA, x){}

where, ϕ′A(φA, x)s =
if αk(x) ∈ s then {} else

⋃
y∈value of(φA(αk(x)))

ϕ′A(φA, y)s∪{αk(x)}, if φA(αk(x)) 6= {}

{αk(x)}, otherwise

The function ϕ′A(φA, x)s terminates only when it evaluates all the abstract input parameters

in value of (φA(αk(x))), whose tags were added to φA in (Aπ3). Note that this termination is
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guaranteed since ϕ′A never performs a recursive call on an input parameter it has encountered

before and the number of input parameters is kept finite by the abstraction, αk.

The rules of the abstract semantics are described informally as follows. Rules, (Aπ1) and

(Aπ2), for null processes and input actions do not change the value of the φA environment,

since no communications take place in these rules. Rule (Aπ3) deals with output actions,

where the meaning of a process guarded by an output action is given as the union of two

φA environments. The first environment reflects all possible communications between the

output action and matching input actions in ρ. A communication is fired whenever the

sets of values of two channels, as given by ϕA, have a non-empty intersection. This means

that there must have been tags with the same values substituting both channels earlier in

the semantics (if the channels were closed under input actions), or that the names of the

channels are the same (if the channels were free or restricted names). The effect of the

communication is reflected by adding the abstract value of the tag of the message to the

value of the substituted input parameter in φA. The second environment is an unchanged

φA reflecting the no-communications scenario.

The rest of the rules, (Aπ4)–(Aπ7), are straightforward. The rule for replicated processes,

(Aπ8), attaches subscripts to bound names and tags of the spawned processes according to

the number of copy of each process. This is necessary to ensure that these names and

tags remain distinct throughout the semantics. The rule uses a least fixed-point calculation

for a special function, Fπ : N → D]
⊥, where the bottom number, n = −1, computes the

bottom semantic element, Aπ([
−1∏
i=1

ren(P, i) ]) ρ φA = ⊥D]
⊥

. It is easy to note that the least

fixed point of Fπ occurs at the minimum number, n, such that Aπ([
n∏
i=1

ren(P, i) ]) ρ φA =

Aπ([
n+2∏
i=1

ren(P, i) ]) ρ φA. This implies that adding two extra copies of P could not induce

any further communications: First, between P and the other processes in parallel, second,

between the two added copies of P , and finally, within P itself.

We state, by the following theorem, the fact that the computation of such least fixed

points are guaranteed to terminate.

Theorem 4 (Termination of the least fixed-point calculation)

The calculation of rule (Aπ8) terminates.

Proof. We give a sketch of the proof of the termination property. Two requirements must

be satisfied. First, the semantic domain must be finite. This is satisfied by the definition

of D]
⊥. The second requirement is to prove that Fπ(n) vD]

⊥
Fπ(n + 1) (i.e., proving the

monotonicity property of Fπ(n)). This requirement can be restated as Aπ([
n∏
P ]) ρ φA vD]

⊥
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Aπ([
n+2∏

P ]) ρ φA. To prove this, we simplify the inequality into Aπ([Q]) ρ φA v Aπ([Q |

P | P ]) ρ φA, where Q =
n∏
P . This is further simplified to become Aπ([Q]) ρ φA v

Aπ([Q]) ρ′ φA, where ρ′ = ρ ]ρ {|P |}ρ ]ρ {|P |}ρ. This result can be proven by induction

over the rules of Aπ. In particular, the most interesting rule is that of (Aπ3), where the

value of φA changes. Since ρ ⊆ ρ′, then x′(y).P ′ ∈ ρ ⇒ x′(y).P ′ ∈ ρ′. This implies

that any communications (and the associated substitutions) taking place in Aπ([Q]) ρ φA

will necessarily take place in Aπ([Q]) ρ′ φA. This eventually leads to the conclusion that

Aπ([Q]) ρ φA v Aπ([Q]) ρ′ φA, since the final environment resulting from Aπ([Q]) ρ φA will

be a subset of the final environment resulting from Aπ([Q]) ρ′ φA (i.e. the larger system

induces more name substitutions). �

In order to be able to prove the safety of the abstract semantics with respect to the non-

standard semantics, we need first to prove the safety of the union of environments, ∪φ.

Lemma 1 (Safety of
⋃
φ in the π-calculus)

∀i ∈ {1 . . . n}, n ∈ N, φi ∈ D⊥, φ′i ∈ D
]
⊥ :

(φ =
⋃
φ

i=1...n

φi) ∧ (φ′ =
⋃
φ

i=1...n

φ′i) ∧

(∃y ∈ N : ϕE(φi, y) ∈ φi(x) ⇒ ∃t ∈ φ′i(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ, y) ∈ φ(x) ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})

Proof. Refer to Appendix A.1. �

Hence, the lemma establishes that for any set of concrete environments, {φ1, . . . , φn}, and

their abstract counterparts, {φ′1, . . . , φ′n}, which are related by the abstraction function, αk,

and the tag evaluation function, value of , then the unions, φ =
⋃
φ

i=1...n

φi and φ′ =
⋃
φ

i=1...n

φ′i,

will maintain this relation. Intuitively, the relation states that a name, y, captured by the

ϕE function in the concrete semantics, will appear as a tag, t, in the abstract environment,

such that the value of t is equivalent to the abstraction, αk(y).

From this lemma, the safety of the abstract semantics can now be established formally.

Theorem 5 (Safety of the abstract semantics of the π-calculus)

∀P, ρ, φE , φA :

(Eπ([P ]) ρ φE = (p, φ′E)) ∧ (Aπ([P ]) ρ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

Proof . Refer to Appendix A.2. �
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The theorem states that values present in the final environment resulting from the con-

crete non-standard semantics will always be present, as tags of their abstract values, in the

environment resulting from the abstract semantics.

4.2.3 The Intruder I

Often when analysing properties of systems, it is the case that the external context is taken

into consideration, so as to achieve a more robust and modular analysis. This context is

sometimes viewed as the larger and more powerful network, which is an arbitrary collec-

tion of intruder processes, I, assumed to be running concurrently with the system under

analysis. The capabilities of this intruder include intercepting, reading and modifying any

messages that travel over public channels as well as creating fresh messages, sending them

to other processes and using them later for further communications. These capabilities vary

depending on the network. For example, a local area network may be limited in its ability to

communicate with computers external to the network as a result of its isolation from other

networks by a firewall. It is also less able to create communication noise as a result of the

high quality of service normally expected from local area networks. On the other hand, the

Internet has a vast amount of information and is capable of communicating with virtually

every computer that has some sort of connection to it (either directly or via a gateway).

For the case of the weakest intruder, its specification is I
def
= 0. However, the model of I

adopted in our framework draws on the lines of the most general attacker as given by Dolev

and Yao in [47]. In the case of non-cryptographic systems, this model lacks the cryptography

aspect and only captures the input/output capabilities of the Dolev-Yao model:

I
def
= (ν i) (i〈κinit〉 | ! i(κ).(

∏
∀x,y∈κ

x〈y〉.i〈κ〉 |
∏
∀x∈κ

x(z).i〈κ∪ {z}〉 | (ν net)i〈κ∪ {net}〉))

In this specification, κ is a set of names representing the knowledge of the intruder, (νnet) al-

lows for the intruder to create fresh data at any time, and i is a channel used for the intruder’s

internal communications. The initial subprocess, i〈κinit〉, outputs the set of names, κinit,

representing an instantiation of the intruder’s initial knowledge (in general, κinit = fn(P ),

for the analysed process, P ).

The above specification allows the intruder to build its knowledge, κ, by repeatedly

inputting over names in its knowledge. The inputted name is then passed as part of the

new knowledge to the next instance of the intruder. The intruder can also perform output

actions. These are either free output actions sending messages over channels already in κ,

or bound output actions that create a copy of the name net and send it over the internal
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channel i. This allows the intruder to learn net without the need to output it first to external

processes. The learning behaviour is interpreted as the standard union, ∪, over κ.

4.2.4 The FTP Server Example

We consider here the example of a simple File Transfer Protocol (FTP) system:

ftp
def
= (!start(x).(ν login)(if x = start then (ν pwd)(Server | Client)

else ((ν pwd)(Server) | I)

)

) | start〈start t1〉.start〈start t2〉.start〈start t3〉.start〈I start t4〉

Server
def
= (ν deal) login(z).if z = pwd then

login(data).(

deal〈datat5〉 | !deal(w).login〈wt6〉.login(u).if u = logout then 0

else deal〈ut7〉 ) else 0

Client
def
= (ν request) (login〈pwd t8〉.login〈request t9〉.login(res).login〈logout t10〉)

Where the tagging scheme, t1, t2, . . . is chosen such that all tags are distinct from each other

(any other tagging scheme maintaining the distinction property could be used instead). The

three start signals spawn three instances of the Client/Server system and the fourth I start

signal allows the intruder, I, to participate in a session with the server. Each instance of the

client/server system shares a one time password, pwd , that is not reusable. Additionally,

communications between the server and the client or intruder processes are carried out over

a secure login channel, login (which could be a Secure Socket Layer (SSL) connection). The

client process performs a sequence of communications, sending the password and the request

for data, and inputting the result from the server. After that, the client process logs out.

The server process accepts a password over the login channel after which it checks whether

that password matches the current copy it shares with the client (intruder). If the password

is correct, it waits for a data request and then deals with that request. For simplicity, the

server just routes back the request over the session channel without altering it. The server

process then waits for another input, after which it terminates if the new signal is logout . If

not, it deals again with further requests sending the results over the login channel.

We adopt the following tagging scheme for the specification of I:

(ν i) (i〈κtκ1init〉 | ! i(κ).(
∏
∀x,y∈κ

x〈yty〉.i〈κtκ2〉 |
∏
∀x∈κ

x(zz).i〈κ∪{zz}tκ3〉 | (νnet)i〈κ∪{net}tκ4〉))
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Assuming the intruder’s initial knowledge is set to κinit = {login, logout}, we obtain the

following least fixed-point value for φA by applying Aπ([ftp]) {| |}ρ φA0, where the integer

constraint is set to k = 1 (uniform analysis):

φA =



κ 7→ {t61, t81, t91, t101, tκ11, tκ21, tκ31, tκ41}

x1 7→ {t1, t2, t3, t4}

z1 7→ {t61, t81, t91, t101, tlogin1, tnet1}

u1 7→ {t61, t81, t91, t101, tlogin1, tnet1}

w1 7→ {t51}

data1 7→ {t61, t81, t91, t101, tlogin1, tnet1}

res1 7→ {t61, t81, t91, t101, tlogin1, tnet1}


Where the name values for the above input parameters can be converted using ϕA:

ϕA(φA, κ) = {net1, pwd1, request1, logout , login1}

ϕA(φA, x1) = {start , I start}

ϕA(φA, z1) = {pwd1, request1, logout , login1,net1}

ϕA(φA, u1) = {pwd1, request1, logout , login1,net1}

ϕA(φA, w1) = {pwd1, request1, logout , login1,net1}

ϕA(φA, data1) = {pwd1, request1, logout , login1,net1}

ϕA(φA, res1) = {pwd1, request1, logout , login1,net1}

We have used underlining to indicate the presence of abnormal information in the intruder’s

knowledge in the final φA environment. The interpretation detects that the intruder is

capable of obtaining the pwd and request names, which is a dangerous result. This result is

a false positive since the uniform interpretation does not distinguish between the different

copies of the login channels. Therefore, it appears to be possible for the intruder to capture

any of the other names outputted over different login names. Moreover, it is impossible to

distinguish between the information each instance of the client and server processes obtains.

For example, the res input parameter captures a request , but also the pwd , logout , login and

net messages. As φA is uniform, it is impossible to distinguish between different sessions.

To refine the above results, we increase the value of k from 1 to 4. The intermediate

values of k = 2 and k = 3 will still yield the above false positives for k = 1 (since the

intruder’s session interferes with clients’ sessions), therefore, we do not include them here.

However, when performing the abstract interpretation for k = 4, we obtain the following

results:
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φA =



κ 7→ {tκ1i, tκ2i, tκ3i, tκ4i} for i = 1 . . . 4

x1 7→ {t1} x2 7→ {t2} x3 7→ {t3} x4 7→ {t4}

z1 7→ {t81} z2 7→ {t82} z3 7→ {t83} z4 7→ {tnet i, tlogin4,

tlogout4}

u1 7→ {t101} u2 7→ {t102} u3 7→ {t103} u4 7→ {}

w1 7→ {t51} w2 7→ {t52} w3 7→ {t53} w4 7→ {}

data1 7→ {t91} data2 7→ {t92} data3 7→ {t93} data4 7→ {}

res1 7→ {t61} res2 7→ {t62} res3 7→ {t63}


The results can be converted back to their name values using the ϕA function, as follows:

ϕA(φA, κ) = ∆, ∆ = {net i, login4, logout | i = 1, 2, 3, 4}

ϕA(φA, x1) = {start} ϕA(φA, x2) = {start}

ϕA(φA, x3) = {start} ϕA(φA, x4) = {I start}

ϕA(φA, z1) = {pwd1} ϕA(φA, z2) = {pwd2}

ϕA(φA, z3) = {pwd3} ϕA(φA, z4) = ∆

ϕA(φA, u1) = {logout} ϕA(φA, u2) = {logout}

ϕA(φA, u3) = {logout} ϕA(φA, u4) = {}

ϕA(φA, w1) = {request1} ϕA(φA, w2) = {request2}

ϕA(φA, w3) = {request3} ϕA(φA, w4) = {}

ϕA(φA, data1) = {request1} ϕA(φA, data2) = {request2}

ϕA(φA, data3) = {request3} ϕA(φA, data4) = {}

ϕA(φA, res1) = {request1} ϕA(φA, res2) = {request2}

ϕA(φA, res3) = {request3}

The results of the non-uniform analysis (k = 4) reveal that the intruder is incapable of

obtaining information from sessions involving clients. It also shows that the server, in fact,

does not process any request from the intruder, since the latter lacks the required password

(in this case, pwd4). Also, a more precise distribution of information between the three copies

of the client and server processes is reflected in the results. For example, it is clear that a

client can only receive a request message as a final result held by the res input parameter.

Also, each copy of resi captures the corresponding copy of request i, for i = 1, 2, 3.

Another version of the FTP system may contain a faulty client specified as follows:

Client
def
= (νrequest)(login〈pwd t8〉.login〈request t9〉.login(res).login〈logout t10〉.covert〈pwd t11〉)

The specification of the client reveals, over a covert channel, the password it shares with the
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server to the intruder. Now, if we perform the abstract interpretation for k = 1 setting the

knowledge of the intruder to κinit = {covert , login, logout}, we obtain the following results:

φA =



κ 7→ {t61, t81, t91, t101, tκ11, tκ21, tκ31, tκ41}

x1 7→ {t1, t2, t3, t4}

z1 7→ {t61, t81, t91, t101, tlogin1, tnet1, tcovert1}

u1 7→ {t61, t81, t91, t101, tlogin1, tnet1, tcovert1}

w1 7→ {t51}

data1 7→ {t61, t81, t91, t101, tlogin1, tnet1, tcovert1}

res1 7→ {t61, t81, t91, t101, tlogin1, tnet1, tcovert1}


Which when converted using ϕA yields the following results:

ϕA(φA, κ) = {net1, pwd1, request1, logout , login1, covert}

ϕA(φA, x1) = {start , I start}

ϕA(φA, z1) = {pwd1, request1, logout , login1,net1, covert}

ϕA(φA, u1) = {pwd1, request1, logout , login1,net1, covert}

ϕA(φA, w1) = {pwd1, request1, logout , login1,net1, covert}

ϕA(φA, data1) = {pwd1, request1, logout , login1,net1, covert}

ϕA(φA, res1) = {pwd1, request1, logout , login1,net1, covert}

The intruder obtains the pwd and request names. Refining the interpretation further by

setting k = 4, reveals that the intruder, in fact, can only capture the password (when the

client reveals it over the covert channel):

φA =



κ 7→ {tκ1i, tκ2i, tκ3i, tκ4i, t111, t112, t113} for i = 1 . . . 4

x1 7→ {t1} x2 7→ {t2} x3 7→ {t3} x4 7→ {t4}

z1 7→ {t81} z2 7→ {t82} z3 7→ {t83}

z4 7→ {tnet i, tlogin4, tlogout4, t111, t112, t113}

u1 7→ {t101} u2 7→ {t102} u3 7→ {t103} u4 7→ {}

w1 7→ {t51} w2 7→ {t52} w3 7→ {t53} w4 7→ {}

data1 7→ {t91} data2 7→ {t92} data3 7→ {t93} data4 7→ {}

res1 7→ {t61} res2 7→ {t62} res3 7→ {t63}


With the converted results obtained using ϕA as follows:
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ϕA(φA, κ) = ∆, ∆ = {net i, login4, logout , covert , pwd j |

i = 1, 2, 3, 4 and j = 1, 2, 3}

ϕA(φA, x1) = {start} ϕA(φA, x2) = {start}

ϕA(φA, x3) = {start} ϕA(φA, x4) = {I start}

ϕA(φA, z1) = {pwd1} ϕA(φA, z2) = {pwd2}

ϕA(φA, z3) = {pwd3} ϕA(φA, z4) = ∆

ϕA(φA, u1) = {logout} ϕA(φA, u2) = {logout}

ϕA(φA, u3) = {logout} ϕA(φA, u4) = {}

ϕA(φA, w1) = {request1} ϕA(φA, w2) = {request2}

ϕA(φA, w3) = {request3} ϕA(φA, w4) = {}

ϕA(φA, data1) = {request1} ϕA(φA, data2) = {request2}

ϕA(φA, data3) = {request3} ϕA(φA, data4) = {}

ϕA(φA, res1) = {request1} ϕA(φA, res2) = {request2}

ϕA(φA, res3) = {request3}

The results of the non-uniform interpretation reveal that the intruder is incapable of com-

promising the system, even in the case where it compromises the password of each client.

This is due to the fact that these passwords are one-time passwords. The name request does

not appear in any of the values for κ (the intruder’s knowledge). Also, the session between

the server and the intruder (for z4) indicates that the intruder is incapable of processing its

data by the server, since it cannot pass beyond the login stage.

4.3 The Spi Calculus

We extend in this section the approach we introduced in Section 4.2 for constructing an

abstract interpretation for the spi calculus. The standard semantics is enhanced to be able

to capture the property of term substitutions occurring as a result of the message passing

and message processing behaviours. Terms can substitute local variables in the residual

processes due to input/output as well as the success of the cryptographic operations, like

decryption or signature verification. Such substitutions may reveal sensitive information to

intruder processes. For example, if the intruder inputs the key to the decryption of a class

of ciphertexts, it will be able to decipher any sensitive information encrypted with that key.
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4.3.1 Non-standard Semantics

The non-standard semantics of the spi calculus extends the standard denotational semantics

introduced in Section 3.3.3, where term substitutions are recorded in a special environment

φE : V → ℘(T ) that maps each variable of a closed process to the set of semantic terms that

may substitute that variable during the evaluation of the meaning of a process. Since the

non-standard semantics is precise (copies of bound names and variables are always distinct),

each variable will be mapped to a singleton set at most per choice of control flow, representing

the term that substitutes the variable.

A domain, D⊥ = V → ℘(T ), can be constructed, ordered by subset inclusion:

∀φE1, φE2 ∈ D⊥ : φE1 vD⊥ φE2 ⇔ ∀x ∈ V : φE1(x) ⊆ φE2(x)

With the bottom element, ⊥D⊥ , being the null environment, φE0, that maps each variable

to the empty set. The union of environments operation, ∪φ, can also be defined as follows:

∀φE1, φE2 ∈ D⊥, x ∈ V : (φE1 ∪φ φE2)(x) = φE1(x) ∪ φE2(x)

The non-standard semantic domain is formed by pairing D⊥ with the standard semantic

domain, Spi⊥, resulting in Spi⊥ × D⊥. The bottom element of this domain is the pair

(⊥Spi⊥ ,⊥D⊥) representing the empty set map, ∅, and the null environment, φE0.

The non-standard semantics for the spi calculus is defined by the semantic function,

Espi([P ]) ρ φE ∈ (Spi⊥ ×D⊥), on the structure of P as in Figure 4.3. The ρ multiset holds

all the processes in parallel with the process under interpretation. The definition of the

ϕE : (V → ℘(T )) × Term → T function allows for the meaning of a term to be computed

under a particular φE environment:

∀φE ,M : ϕE(φE ,M) =



t, if M ∈ V ∧ φE(M) = {t}

M, if M ∈ N

sec(ϕE(φE ,M
′), ϕE(φE , N)), if M = {M ′}N

pub(ϕE(φE ,M
′), ϕE(φE , N)), if M = {[M ′]}N

sig(ϕE(φE ,M
′), ϕE(φE , N)), if M = [{M ′}]N

(ϕE(φE ,M1), . . . , ϕE(φE ,Mn)), if M = (M1, . . . ,Mn)

The semantic rules are described as follows. In rule (Espi1), the meaning of a null process

is described as the pair (∅, φE), where φE is the environment supplied to the rule initially.

Rules (Espi2) and (Espi3) deal with the cases of input and output actions, respectively.

Communications are dealt with in rule (Espi3) for output actions, therefore, φE remains

unchanged in rule (Espi2) for input actions. The rule for output actions requires that terms
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(Espi1) Espi([0]) ρ φE = (∅, φE)

(Espi2) Espi([M(x).P ]) ρ φE = ({|in(ϕE(φE ,M), λx.p′)|}, φE)

where, (p′, φ′E) = Rspi([{|P |}ρ]) φE and, ϕE(φE ,M) ∈ N

(Espi3) Espi([M〈L〉.P ]) ρ φE =

(
⊎

M ′(z).P ′∈ρ
{|tau(p′)|} ] {|out(ϕE(φE ,M), ϕE(φE , L), p′′)|},

⋃
φ

M ′(z).P ′∈ρ
φ′E ∪φ φE)

if, ϕE(φE ,M) = ϕE(φE ,M
′) ∈ N

where, (p′, φ′E) = Rspi([{|P |}ρ ]ρ ρ[P ′/M ′(z).P ′]]) φE [z 7→ {ϕE(φE , L)}]

and, (p′′, φ′′E) = Rspi([{|P |}ρ]) φE

(Espi4) Espi([(νa)P ]) ρ φE = (new(λa.p′), φ′E)

where, (p′, φ′E) = Rspi([{|P |}ρ ]ρ ρ]) φE

(Espi5) Espi([P | Q]) ρ φE = Rspi([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φE

(Espi6) Espi([!P ]) ρ φE = Fspi(−1)

where, Fspi(n) = let v1 = Espi([
n∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE in

let v2 = Espi([
n+2∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE in

if v1 = v2 then v1 else Fspi(n+ 1)

and, bnv i(P ) = {xi | x ∈ bnv(P )}

(Espi7) Espi([if M = L then P else Q]) ρ φE = Rspi([{|P |}ρ ]ρ ρ]) φE , if ϕE(φE ,M) = ϕE(φE , L)

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

Figure 4.3: The non-standard semantics of the spi calculus.
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(Espi8) Espi([let (x1, . . . , xn) = M in P else Q]) ρ φE =
Rspi([{|P |}ρ ]ρ ρ]) φ′E , if ϕE(φE ,M) = (t1, . . . , tn)

where, φ′E = φE [x1 7→ {t1}, . . . , xn 7→ {tn}]

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

(Espi9) Espi([case L of {x}N in P else Q]) ρ φE =
Rspi([{|P |}ρ ]ρ ρ]) φ′E , if ϕE(φE , L) = sec(t, k) and ϕE(φE , N) = k

where, φ′E = φE [x 7→ {t}]

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

(Espi10) Espi([case L of {[x]}N in P else Q]) ρ φE =
Rspi([{|P |}ρ ]ρ ρ]) φ′E , if ϕE(φE , L) = pub(t, k+) and ϕE(φE , N) = k−

where, φ′E = φE [x 7→ {t}]

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

(Espi11) Espi([case L of [{x}]N in P else Q]) ρ φE =
Rspi([{|P |}ρ ]ρ ρ]) φ′E , if ϕE(φE , L) = sig(t, k−) and ϕE(φE , N) = k+

where, φ′E = φE [x 7→ {t}]

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

(Rspi0) Rspi([ρ]) φE = (
⊎
P∈ρ

p′,
⋃
φ

P∈ρ
φ′E), where, (p′, φ′E) = Espi([P ]) (ρ\{|P |}ρ) φE

Figure 4.3: The non-standard semantics of the spi calculus (continued).

70



used as channels should evaluate to names, and communications occur whenever an input

channel is matched in ρ. The value of φE is updated with the message term substituting

the input parameter. Rule (Espi4) interprets the meaning of a restriction using the new

operation on the first element of the resulting pair, whereas the second element reflects the

environment resulting from the residue. This is justified as internal communications are

preserved by restriction. Rule (Espi5) adds two parallel processes to the multiset, ρ.

The replication of processes is dealt with in rule (Espi6) by computing a special function,

Fspi : N → Spi⊥ ×D⊥, starting at the bottom number, n = −1, and incrementing n until

we reach a least fixed-point for v1 ∈ Spi⊥ × D⊥. Such a computation is not guaranteed

to terminate due to the infinite nature of the non-standard semantic domain, Spi⊥ × D⊥.

Also, α-conversion renames the set of bound names and variables of each process copy, while

maintaining the compositionality of the semantics. Rule (Espi7) deals with a conditional

process, where the meaning of the overall process is chosen from the two branch processes

based on the semantic equality of the compared terms. Pair splitting is dealt with in rule

(Espi8) where the φE is updated to hold the result of the substitution of local variables by

elements of a tuple. The rest of the rules (Espi9)–(Espi11) deal with cryptographic processes

performing secret-key decryption, public-key decryption and digital signature verification.

The success of these operations will result in the φE being updated and it depends on the

meaning of the term being decrypted (verified) and the cryptographic key used. If the

operation fails, a different process is chosen and added to ρ, without affecting φE .

The correctness requirement for the non-standard semantics of the spi calculus, with

respect to its standard semantics, is expressed in the following theorem.

Theorem 6 (Correctness of the Non-Standard Semantics of the Spi Calculus)

∀P ∈ P : (Sspi([P ]) ρ φS = p) ∧ (Espi([P ]) ρ φE = (p′, φ′E)) ⇒ p = p′

Proof . The proof is by induction over the standard and non-standard semantics. �

The theorem states that the standard element of the non-standard semantics is equivalent

to the value obtained from the standard semantics. In other words, the standard meaning

can be extracted from the non-standard meaning.

4.3.2 Abstract Semantics

In this section, we redefine the abstraction used in interpreting processes in the π-calculus

(Section 4.2.2) to accommodate the cryptographic behaviour of processes in the spi calculus.

In a π-calculus process, terms can only be names; therefore tagging names appearing as

messages was sufficient to construct a mapping from input parameters to sets of tags (the
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φA environment). In a spi calculus process, terms can be constructed from cryptographic

operations, and hence, they are complex data structures that may grow in depth as a result

of replicated behaviour. Therefore, different tagging is required in the spi calculus.

We begin by assuming again, a finite predomain of tags, Tag , ranged over by t, ṫ, ẗ, where

t is the tag of a generic term, ṫ is the tag of a primitive term (name, variable) and ẗ is the tag

of a complex term (ciphertext, signature, tuple). Next we tag (sub)terms of the analysed

process with unique tags. More precisely, we tag M in the following constructs:

- let (x1, . . . , xn) = (M1, . . . ,Mn) in P else Q

- case {M}L of {x}N in P else Q

- case {[M ]}L of {[x]}N in P else Q

- case [{M}]L of [{x}]N in P else Q

- N〈M〉.P .

For example, tagging the term {({a}c, {b}e)}d yields {({aṫ1}ẗ1c , {bṫ2}ẗ2e )ẗ3}ẗ4d . Now, we can

define the following functions over tags, terms and processes:

- value of ({t1, . . . , tn}) = {M1, . . . ,Mn}. This function can be applied to a set of

tags, {t1, . . . , tn}, returning the corresponding set of terms, {M1, . . . ,Mn}. Hence,

value of ({ṫ1, ẗ4}) = {aṫ1, {({aṫ1}ẗ1c , {bṫ2}ẗ2e )ẗ3}ẗ4d }.

- tags of (P ) = {t1, . . . , tn}. This function returns the set of tags, {t1, . . . , tn}, used in

a process, P . For example, tags of (m〈aṫ1〉.m〈{(bṫ2, cṫ3)ẗ1}ẗ2k 〉.0) = {ṫ1, ṫ2, ṫ3, ẗ1, ẗ2}.

- untag({M ′1, . . . ,M ′n}) = {M1, . . . ,Mn}. When applied to a set of tagged terms,

{M ′1, . . . ,M ′n}, this function removes all associated tags yielding a set of untagged

terms, {M1, . . . ,Mn}. Hence, untag({aṫ5, {(aṫ1, {bṫ2}ẗ2e )ẗ3}ẗ4d }) = {a, {(a, {b}e)}d }.

The function behaves as id if a term, M ′, has no tags.

We now introduce the αk,k′ abstraction function, which keeps to a finite level, the number

of copies of bound variables, names and tags captured in the abstract semantics.

Definition 2 Define the abstraction, αk,k′ : N× N× (V +N + Tag)→ (V ] +N ] + Tag]):

∀M ∈ (V +N + Tag), i, k, k′ ∈ N : αk,k′(M) =



ṫk, if M = ṫi ∈ Tag and i > k

ẗk′ , if M = ẗi ∈ Tag and i > k′

xk, if M = xi ∈ V and i > k

ak, if M = ai ∈ N and i > k

M, otherwise

72



The resulting abstract predomains, V ], N ] and Tag], can be defined as V ] = V \{xj | j > k},

N ] = N\{aj | j > k} and Tag] = Tag\({ṫj | j > k} ∪ {ẗi | i > k′}). Informally, k

constrains the number of bound variables and names, and tags of primitive terms, whereas k′

constrains the number of tags of complex terms. In effect, constraining the tags of primitive

terms implies limiting the copies of bound names and variables carrying the tags, whereas

constraining the number of tags of complex terms means limiting the depth of complex data

structures.

For example, in the process !(ν n)a〈nṫ〉 | !a(x), it is possible to spawn infinite copies of

each replication, !(ν n)a〈nṫ〉 | !a(x) | (ν n1)a〈nṫ11 〉 | a(x1) | (ν n2)a〈nṫ22 〉 | a(x2) | . . .. It

is clear that ṫ is an indicator to the number of copies the new name, n, has after spawning

each process. On the other hand, the process !a(x).a〈{x}ẗk〉 | a〈b〉, which can be rewritten

as !a(x).a〈{x}ẗk〉 | a(x1).a〈{x1}ẗ1k 〉 | a(x2).a〈{x2}ẗ2k 〉 | a〈b〉 | . . . demonstrates the role

of ẗ as an indicator to the number of times the ciphertext, {x}k, is applied to the name, b.

Using the αk,k′ abstraction, we construct the abstract environment φA : V ] → ℘(Tag]),

which maps each abstract bound variable of the analysed process to a set of tags, representing

terms that could substitute that variable during the abstract semantics. An abstract domain

D]
⊥ = V ] → ℘(Tag]) is formed ordered by subset inclusion:

∀φA1, φA2 ∈ D]
⊥, x ∈ V

] : φA1 vD]
⊥
φA2 ⇔ φA1(x) ⊆ φA2(x)

The bottom element, ⊥D]
⊥

, is the null environment, φA0, mapping each variable to {}.

Taking D]
⊥ as the abstract semantic domain, we can define the abstract semantics of the

spi calculus by the functionAspi([P ]) ρ φA ∈ D]
⊥, shown in Figure 4.4. The semantics utilises

the multiset, ρ, to hold all the processes in parallel with the analysed process. The special

function, ϕA : (V ] → ℘(Tag]))×Term → ℘(Term), returns a set of terms corresponding to

a term, M , given substitutions captured by φA:

ϕA(φA,M) = ϕ′A(φA,M
′){}, where, M ′ = M [αk,k′(t)/t][αk,k′(x)/x][αk,k′(n)/n] and,

ϕ′A(φA,M)s = if M ∈ s then {} else

⋃
L∈value of(φA(untag(M)))

ϕ′A(φA, L)s∪{M} if M ∈ V

{M}, if, M ∈ N

{∀N ′ ∈ ϕ′A(φA, N)s∪{M}, L
′ ∈ ϕ′A(φA, L)s∪{M} : {N ′}tL′ }, if, M = {N}tL

{∀N ′ ∈ ϕ′A(φA, N)s∪{M}, L
′ ∈ ϕ′A(φA, L)s∪{M} : {[N ′]}tL′ }, if, M = {[N ]}tL

{∀N ′ ∈ ϕ′A(φA, N)s∪{M}, L
′ ∈ ϕ′A(φA, L)s∪{M} : [{N ′}]tL′ }, if, M = [{N}]tL

{∀M ′1 ∈ ϕ′A(φA,M1)s∪{M}, . . . ,M
′
n ∈ ϕ′A(φA,Mn)s∪{M} :

(M ′1, . . . ,M
′
n)t }, if, M = (M1, . . . ,Mn)t
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(Aspi1) Aspi([0]) ρ φA = φA

(Aspi2) Aspi([M(x).P ]) ρ φA = φA

(Aspi3) Aspi([M〈Lt〉.P ]) ρ φA = (
⋃
φ

M ′(z).P ′∈ρ
φ′A) ∪φ φA

if, untag(ϕA(φA,M)) ∩ untag(ϕA(φA,M
′)) ∩N 6= {}

where, φ′A = Rspi([{|P |}ρ ]ρ ρ[P ′/M ′(z).P ′]]) φ′′A

and, φ′′A = φA[αk,k′(z) 7→ φA(αk,k′(z)) ∪ {αk,k′(t)}]

(Aspi4) Aspi([(νa)P ]) ρ φA = Rspi([{|P |}ρ ]ρ ρ]) φA

(Aspi5) Aspi([P | Q]) ρ φA = Rspi([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φA

(Aspi6) Aspi([!P ]) ρ φA = Fspi(−1)

where, Fspi(n) = let φ1 = Aspi([
n∏
i=1

ren(P, i) ]) ρ φA in

let φ2 = Aspi([
n+2∏
i=1

ren(P, i) ]) ρ φA in

if φ1 = φ2 then φ1 else Fspi(n+ 1)

and, ∀x ∈ bnv(P ), t ∈ tags of (P ) : ren(P, i) = (P [xi/x])[ti/t]

(Aspi7) Aspi([if M = L then P else Q]) ρ φA = Rspi([{|P |}ρ ]ρ ρ]) φA, if, untag(ϕA(φA,M)) ∩ untag(ϕA(φA, L)) 6= {}

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

Figure 4.4: The abstract semantics of the spi calculus.
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(Aspi8) Aspi([let (x1, . . . , xn) = M in P else Q]) ρ φA =

⋃
φ

(M
t1
1 ,...,Mtn

n )∈ϕA(φA,M)

Rspi([{|P |}ρ ]ρ ρ]) φ′A,

if ∃(M t1
1 , . . . ,M

tn
n ) ∈ ϕA(φA,M)

where, φ′A = φA[αk,k′(x1) 7→ φA(αk,k′(x1)) ∪ {αk,k′(t1)}, . . . ,

αk,k′(xn) 7→ φA(αk,k′(xn)) ∪ {αk,k′(tn)}]

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

(Aspi9) Aspi([case L of {x}N in P else Q]) ρ φA =

⋃
φ

{Mt}n∈ϕA(φA,L)
Rspi([{|P |}ρ ]ρ ρ]) φ′A, if, n ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(t)}]

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

(Aspi10) Aspi([case L of {[x]}N in P else Q]) ρ φA =

⋃
φ

{[Mt]}n+∈ϕA(φA,L)
Rspi([{|P |}ρ ]ρ ρ]) φ′A, if, n− ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(t)}]

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

(Aspi11) Aspi([case L of [{x}]N in P else Q]) ρ φA =

⋃
φ

[{Mt}]n−∈ϕA(φA,L)
Rspi([{|P |}ρ ]ρ ρ]) φ′A, if, n+ ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(t)}]

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

(Rspi0) Rspi([ρ]) φA =
⋃
φ

P∈ρ
Aspi([P ]) (ρ\{|P |}ρ) φA

Figure 4.4: The abstract semantics of the spi calculus (continued).
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The description of the rules is as follows. Rules (Aspi1) and (Aspi2) return the φA environ-

ment unchanged. Communications are dealt with in rule (Aspi3) for output actions, where

synchronising output and input channels yield a communication, in which the tag of the

message is captured by φA. The semantics is imprecise, since φA only captures an abstract

tag as a value for an abstract variable. Rules (Aspi4) and (Aspi5) deal with the cases of

restriction and parallel composition directly by placing the subprocesses with the rest in ρ.

The rule for replication, (Aspi6), performs a least fixed point calculation using a special

function, Fspi : N → D]
⊥. This least fixed point occurs at the minimum number, n, such

that Aspi([
n∏
i=1

ren(P, i) ]) ρ φA = Aspi([
n+2∏
i=1

ren(P, i) ]) ρ φA. The termination property of

this calculation is stated formally in the following theorem.

Theorem 7 (Termination of the least fixed-point calculation)

The calculation of rule (Aspi6) terminates.

Proof. To prove the termination property, it is necessary to satisfy two requirements. First,

the semantic domain must be finite. This is satisfied by the definition of D]
⊥. The second

requirement is to prove the monotonicity of Aspi([
n∏
P ]) ρ φA, i.e. Aspi([

n∏
P ]) ρ φA v

Aspi([
n+2∏

P ]) ρ φA. To prove this, we simplify the inequality into Aspi([ Q ]) ρ φA v

Aπ([ Q | P ]) ρ φA, where Q =
n∏
P . This is further simplified to become Aspi([ Q ]) ρ φA v

Aπ([ Q ]) ρ′ φA, where ρ′ = ρ]ρ{|P |}ρ. This can be proven by induction over Aspi([ P ]) ρ φA.

In particular, the most interesting cases are rules (Aspi3) and (Aspi8)–(Aspi11), where φA

changes. For example, in rule (Aspi3), we have that since ρ ⊆ ρ′, then M ′(y).P ′ ∈ ρ ⇒

M ′(y).P ′ ∈ ρ′. From this we can conclude that Aspi([ Q ]) ρ φA v Aspi([ Q ]) ρ′ φA, since the

environment resulting from Aspi([ Q ]) ρ φA will necessarily be a subset of the environment

resulting from Aspi([ Q ]) ρ′ φA (i.e. the larger system induces more term substitutions). �

The rule for replication also uses the labelling mechanism to α-convert the set of bound

names and variables of each copy of the replication, !P , as well as its set of tags. This

renaming does not affect the compositionality of the semantics. The rule for conditional

processes, (Aspi7), relies on the equality of two untagged terms under φA. If in the case

that the equality does not hold, a different alternative process is chosen. The rule for tuple

splitting, (Aspi8), attempts to split elements of a set of tuples corresponding to the value

of ϕA(φA, L) of a term, L. The φA environment is updated with the tags of the elements

of each tuple. In case no tuples exist in the set, an alternative process is chosen and φA is

left unchanged. The rest of the rules, (Aspi9)–(Aspi11), deal with cryptographic processes.

Again, a process attempts to decipher (verify) a term, L, closed by ϕA(φA, L). The tags of

the deciphered plaintexts are added to φA. Else a different process is chosen without affecting
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φA. Finally, rule (Rspi0) groups all the environments resulting from the interpretation of

processes in ρ with the union of environments operation, ∪φ.

We restate here the safety of the ∪φ operation for the case of the spi calculus (formalised

earlier for the case of the π-calculus in Section 4.2.2).

Lemma 2 (Safety of
⋃
φ in the spi calculus)

∀i ∈ {1 . . . n}, n ∈ N, φi ∈ D⊥, φ′i ∈ D
]
⊥ :

(φ =
⋃
φ

i=1...n

φi) ∧ (φ′ =
⋃
φ

i=1...n

φ′i) ∧

(∃M ∈ Term : ϕE(φi,M) ∈ φi(x) ⇒ ∃t ∈ φ′i(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

Proof. Refer to Appendix A.3. �

From this result, we can state the safety of the abstract semantics by the following

theorem.

Theorem 8 (Safety of the abstract semantics for the spi calculus)

∀P, ρ, φE , φA :

(Espi([P ]) ρ φE = (p, φ′E)) ∧ (Aspi([P ]) ρ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Proof . Refer to Appendix A.4. �

The theorem states that for any term, M , captured in the non-standard semantics by

including its ϕE(φ
′
E ,M) value in the value of a variable, φ′E(x), then that will correspond

to capturing a tag, t, in the abstract semantics, by φ′A(αk,k′(x)). The appropriateness of

t is expressed by the ability to obtain an abstract form, ∀x ∈ bnv(M) : M [αk,k′(x)/x],

of the concrete term, M , by evaluating t using value of and untagging the resulting term,

M ′, using untag . More concisely, every concrete term, M , captured in the non-standard

semantics is also captured in the form of the corresponding abstract tag, t, in the abstract

semantics.
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4.3.3 The Intruder I

The specification of the intruder in the spi calculus is inspired by the model presented by

Dolev and Yao [47]. The model describes the general guidelines along which the most general

attacker in cryptographic protocols can be specified. This model was shown by [40] to be

sufficient to subsume any other adversary and the specification is dependent on the language

of choice. In this section, we specify the most general attacking process in the spi calculus.

Informally, any such specification should adhere to the following criteria:

• The attacker can read, learn, modify and block any messages passed over the network’s

public channels, as well as create fresh messages. It can also send the messages it has

in its knowledge to other processes.

• The attacker can compose tuples from learnt messages and can decompose learnt tuples

to their basic elements.

• The attacker can apply cryptographic operations, such as encryption, decryption etc.

to any of the messages it has in its knowledge using any of the keys it knows about.

The cryptographic model of the spi calculus coincides with Dolev-Yao’s cryptographic

abstraction as both assume perfect cryptography.

The above features can be stated more formally in the spi calculus by the specification of

Figure 4.5. The specification contains the subprocess i〈κinit〉, which initialises the knowledge

of the intruder by setting κinit = {Mn, . . . ,M0}, where for the analysed process P running

in parallel with I, we have that fn(P ) = {Mn, . . . ,M0}. Moreover, we refer to the set of

names obtained by κ during the interpretation as φA(κ). The knowledge of the intruder, κ,

is increased due to the message-passing behaviour whenever input actions occur or fresh data

are created as part of bound output actions. κ also increases due to the message-processing

behaviour whenever decryption, signature verification or tuple-splitting operations succeed.

In both cases, standard union is performed between κ and the extra term.

Apart from the initialisation process i〈κinit〉, the rest of the specification consists of a

replication of processes each of which is guarded by an input action, i(κ), over the special

channel i. The input parameter κ is instantiated with sets of terms. This is necessary to

be able to express the fact that I can learn from its own behaviour. For example, in order

for κ to obtain the new name net without necessarily outputting net to external processes,

I sends net over channel i. Similarly, in order for κ to learn all the terms it has encrypted,

signed etc., it needs to send them again over channel i. On the other hand, the main body

of the process consists of the parallel composition of all the possible input/output actions
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I
def
= (ν i) ( i〈κinit〉 | !i(κ).(

(ν net)i〈κ ∪ {net}〉 |∏
∀M,N∈κ

M〈N〉.i〈κ〉 |∏
∀M∈κ

M(x).i〈κ ∪ {x}〉 |∏
∀M,N,L∈κ

M〈{N}L〉.i〈κ ∪ { {N}L }〉 |∏
∀M,N,L∈κ

M〈{[N ]}L〉.i〈κ ∪ { {[N ]}L }〉 |∏
∀M,N,L∈κ

M〈[{N}]L〉.i〈κ ∪ { [{N}]L }〉 |∏
∀M,N1,...,Nn∈κ

M〈(N1, . . . , Nn)〉.i〈κ ∪ { (N1, . . . , Nn) }〉 |∏
∀M,N∈κ

case M of {x}N in i〈κ ∪ {x}〉 |∏
∀M,N∈κ

case M of {[x]}N in i〈κ ∪ {x}〉 |∏
∀M,N∈κ

case M of [{x}]N in i〈κ ∪ {x}〉 |∏
∀M∈κ

let (x1, . . . , xn) = M in i〈κ ∪ { (x1, . . . , xn) }〉

))

Figure 4.5: Specification of the Dolev-Yao attacker in the spi calculus.

and cryptographic operations quantified over all the terms currently in κ.

4.3.4 The Needham-Schroeder Public-Key Protocol Example

The Needham-Schroeder public key authentication protocol [100] aims at establishing au-

thentication between two entities, an initiator, Init , and a responder, Resp. The protocol

can be described by the following reduced sequence of messages using nonces N,N ′ [87],

which assume that both agents have each other’s public keys K+
Init and K+

Resp, beforehand:

Message 1 Init → Resp : Init ,Resp, {N, Init}K+
Resp

on cResp

Message 2 Resp → Init : Resp, Init , {N,N ′}K+
Init

on cInit

Message 3 Init → Resp : Init ,Resp, {N ′}K+
Resp

on cResp

After which Init and Resp have authenticated each other’s identities. We also include

Messages 4 and 5 to indicate the mutual trust established after the protocol:

Message 4 Resp → Init : {M ′, N}N ′ on cInit

Message 5 Init → Resp : {M,N ′}N on cResp
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Where M ′ and M are messages created by Resp and Init respectively. Here, Init fully trusts

that M ′ is from Resp and similarly, Resp fully trusts that M is from Init . Nonces N ′ and N

can be used as keys since these are names. This is done in order to indicate the importance

of these nonces for the security of messages following the completion of the protocol.

The specification of the Needham-Schroeder protocol in the spi calculus is given in Figure

4.6, where the continuation processes of Init and Resp are denoted by F and F ′, respectively

(F and F ′ are arbitrary dummy values and do not play any role in the analysis). In this

specification, we have used non-recursive definitions Init(X,Y ) and Resp(X,Y ) to describe

the behaviours of the protocol initiator and responder participants. Here, X is an agent

variable representing the identity of the initiator and Y is an agent variable representing the

identity of the responder. Both X and Y may be instantiated by agent names A,B,C . . ..

Hence, Init〈A,B〉 ≡ Init [A/X,B/Y ] indicates that the initiator is agent A and it is initiating

the protocol to agent B and Resp〈A,B〉 ≡ Resp[A/X,B/Y ] to indicate that the responder

is agent B and it is expected to respond to agent A. Note that the specification of the

responder performs a matching check between variable u′XY and the supplied parameter X

to determine whether or not it is the expected initiator. If not, the responder halts, else it

continues with the protocol. Variable u′XY will be instantiated to the name of the initiator

as included in the Message 1.

It is important to distinguish at this point between the concept of a role and that of an

agent . Init and Resp are roles that can be played by the same agent or by different agents.

In general, we assume from now on the presence of two honest agents, A and B. In addition

to these agents, the intruder I exists and it is specified as in Section 4.3.3 by the Dolev-Yao

model. Agents A and B are honest in the sense that they can assume no other specification

apart from the Init(X,Y ) and Resp(X,Y ) processes. For example, agent A can act as Init

in one session and as Resp in the next. As a result, it is necessary to include all the possible

combinations involving two agents A and B as is done in the specification of the Protocol

process. Additionally, when A (or B) acts as the initiator or the responder of the protocol

(playing the Init or Resp role), it has the option of communicating with the intruder I.

Therefore, the specification must allow for this possibility equally as well by including the

options Init〈A, I〉, Init〈B, I〉, Resp〈I, A〉 and Resp〈I,B〉.

Assuming the intruder I has initially the knowledge κinit = {A,B, I,K+
I ,K

−
I ,K

+
A ,K

+
B ,

cA, cB , cI , }, we perform the abstract interpretation by applying Aspi([Protocol ]) {| |}ρ φA0

for α1,1 (uniform analysis). The least fixed point values for untag(ϕA(φA, x)) for some of

the variables, x, are shown in Figure 4.7. Since the definitions of security properties in the

next chapter rely on names only, we only show these. Also, underlining is used to draw the
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Init(X,Y )
def
= (ν NXY )(ν MXY ) (

cY 〈X,Y, {[NXY , X]}K+
Y
〉.cX(xXY ).

let (uXY , yXY , zXY ) = xXY in

case zXY of {[wXY ]}K−X in

let (rXY , vXY ) = wXY in

if (rXY = NXY ) then

cY 〈X,Y, {[vXY ]}K+
Y
〉.cX(msg1′′XY ).

case msg1′′XY of {msg1′XY }vXY
in

let (msg1XY , tXY ) = msg1′XY in

if (tXY = NXY ) then

cY 〈{MXY , vXY }NXY
〉.F (msg1XY ))

Resp(X,Y )
def
= (ν N ′XY )(ν M ′XY ) (

cY (x′XY ).let (u′XY , y
′
XY , z

′
XY ) = x′XY in

if (u′XY = X) then

case z′XY of {[w′XY ]}K−Y in

let (r′XY , v
′
XY ) = w′XY in

if (v′XY = X) then

cX〈Y,X, {[r′XY , N ′XY ]}K+
X
〉.cY (t′XY ).

let (o′XY , f
′
XY , e

′
XY ) = t′XY in

case e′XY of {[h′XY ]}K−Y in

if (h′XY = N ′XY ) then

cX〈{M ′XY , r′XY }N ′XY
〉.cY (msg2′′XY ).

case msg2′′XY of {msg2′XY }r′XY
in

let (msg2XY , g
′
XY ) = msg2′XY in

if (g′XY = N ′XY ) then F ′(msg2XY ))

Protocol
def
= (ν K−A ) !(Init〈A,B〉 | Init〈A, I〉 | Resp〈B,A〉 | Resp〈I, A〉) |

(ν K−B ) !(Init〈B,A〉 | Init〈B, I〉 | Resp〈A,B〉 | Resp〈I,B〉) |

(ν K−I )(I)

Figure 4.6: Specification of the Needham-Schroeder protocol.
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attention of the reader to interesting values.

κ 7→ {A,B, I,K+
I ,K

−
I ,K

+
A ,K

+
B , cA, cB , cI ,

NAI1, NBI1, N
′
IA1, N

′
IB1, N

′
AB1, N

′
BA1,

MAI1,MBI1,M
′
IA1,M

′
IB1,M

′
AB1,M

′
BA1,net1}

msg1AB1 7→ {M ′AB1} rAB1 7→ {NAB1} ∪∆ vAB1 7→ {N ′AB1} ∪∆

msg1BA1 7→ {M ′BA1} rBA1 7→ {NBA1} ∪∆ vBA1 7→ {N ′BA1} ∪∆

msg1AI1 7→ {net1} rAI1 7→ {NAI1} ∪∆ vAI1 7→ {net1} ∪∆

msg1BI1 7→ {net1} rBI1 7→ {NBI1} ∪∆ vBI1 7→ {net1} ∪∆

msg2AB1 7→ {MAB1} ∪∆ h′AB1 7→ {N ′AB1} ∪∆ r′AB1 7→ {NAB1} ∪∆

msg2BA1 7→ {MBA1} ∪∆ h′BA1 7→ {N ′BA1} ∪∆ r′IB1 7→ {net1} ∪∆

msg2IB1 7→ {net1} h′IA1 7→ {N ′IA1} ∪∆ r′BA1 7→ {NBA1} ∪∆

msg2IA1 7→ {net1} h′IB1 7→ {N ′IB1} ∪∆ r′IA1 7→ {net1} ∪∆

where, ∆ = untag(ϕA(φA, κ))

Figure 4.7: Results of analysing the Needham-Schroeder protocol.

In these results, we find that nonce N ′AB1 created by B in response to A and nonce

N ′BA1 created by A in response to B appear in the knowledge of the intruder κ along with

the corresponding messages M ′AB1 and M ′BA1. Although we only show the name subset

of the final results, the intruder is also capable of learning any complex terms that can be

constructed from this subset. Also, we find that both A and B when acting as responders

in communication sessions involving themselves only, may accept messages and nonces from

I as well. These interfering messages and nonces can be any value captured by the intruder.

The anomalous results correspond to the famous man-in-the-middle attack, first pub-

lished and fixed by Lowe [87]. In this attack, the intruder I is capable of masquerading as

the initiator to the responder in communication sessions involving honest agents A and B

only. This will eventually cause the responder to reveal secret messages to I and will cause

I to undermine the authenticity requirements of the responder.

The important case where the attack occurs is when the initiator of the protocol, which is

an honest agent A, attempts to initiate a session with the intruder I, which then manipulates

this session to initiate another session with the other honest agent B while impersonating A.

At the end of the protocol, I convinces B that it is communicating with A. The following

sequence of messages describes a particular instance of the attack. Two sessions a and b are
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running in parallel. In a, A is the initiator and I is the responder, and in b, I(A) is the

initiator and B is the responder (I(A) denotes I masquerading as A):

Message 1a A→ I : A, I, {N1, A}K+
I

on cI

Message 1b I(A)→ B : A,B, {N1, A}K+
B

on cB

Message 2b B → I(A) : B,A, {N1, N2}K+
A

on cA

Message 2a I → A : I, A, {N1, N2}K+
A

on cA

Message 3a A→ I : A, I, {N2}K+
I

on cI

Message 3b I(A)→ B : A,B, {N2}K+
B

on cB

Message 4b B → I(A) : {M,N1}N2
on cA

Message 5b I(A)→ B : {M ′, N2}N1
on cB

The attack occurs due to the fact that the two nonces encrypted and returned by B in

Message 2b bear no indication as to the identity of the initiator that B expects from the

previous message 1b. Hence, the intruder is capable of using these nonces in the context

of its communication with agent A. In the next chapter, we formalise the secrecy and

authenticity properties of the protocol.

4.3.5 The SPLICE/AS Protocol Example

The SPLICE/AS protocol was first suggested by [134] as a public-key protocol that estab-

lishes authentication between two agents. The protocol was found flawed in [80], and two

attacks were published that allowed the intruder to impersonate initiators and responders.

Here, we consider the modified version of the protocol as suggested in [80], where we

have removed the messages dealing with the distribution of the public keys as in [42], and

assumed that both the initiator and the responder have obtained each other’s public keys

in a secure manner. Then the resulting sequence of messages describes the protocol, where

N is a nonce (we have further omitted timestamps):

Message 1 Init → Resp : Init ,Resp, {Init , {N}K+
Resp
}K−Init

on cResp

Message 2 Resp → Init : Resp, Init , {Resp, N}K+
Init

on cInit

These messages establish authentication between an initiator and a responder whenever

the responder verifies successfully the digital signature created by the initiator in the first

message and the initiator receives back its nonce from the responder in the second message.

One may include Messages 3 and 4 to indicate that both the initiator and the responder are

confident enough to exchange secret messages:
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Message 3 Init → Resp : {M}N on cResp

Message 4 Resp → Init : {M ′}N on cInit

Where we have assumed that nonce N is used as a shared session key. Alternatively, a

separate session key K could be created by the initiator and sent to the responder.

The specification of the modified SPLICE/AS protocol in the spi calculus is given in Fig-

ure 4.8. The continuation processes of Init and Resp are denoted by F and F ′, respectively.

Here we have used non-recursive definitions to arrive at a simple specification.

Init(X,Y )
def
= (ν NXY )(ν MXY ) (

cY 〈X,Y, [{X, {[NXY ]}K+
Y
}]K−X 〉.

cX(xXY ).let (uXY , yXY , zXY ) = xXY in

case zXY of {[wXY ]}K−X in

let (rXY , vXY ) = wXY in

if vXY = NXY then

if rXY = Y then

cY 〈{MXY }vXY
〉.cX(msg1′XY ).

case msg1′XY of {msg1XY }vXY
in

F (msg1XY )

Resp(X,Y )
def
= (ν M ′XY ) (

cY (x′XY ).let (u′XY , y
′
XY , z

′
XY ) = x′XY in

if u′XY = X then

case z′XY of [{w′XY }]K+
X

in

let (r′XY , s
′
XY ) = w′XY in

case s′XY of {[v′XY ]}K−Y in

cX〈Y,X, {[Y, v′XY ]}K+
X
〉.cY (msg2′XY ).

case msg2′XY of {msg2XY }v′XY
in

cX〈{M ′XY }v′XY
.F (msg2XY )

Protocol
def
= (ν K−A ) !(Init〈A,B〉 | Init〈A, I〉 | Resp〈B,A〉 | Resp〈I, A〉) |

(ν K−B ) !(Init〈B,A〉 | Init〈B, I〉 | Resp〈A,B〉 | Resp〈I,B〉) |

(ν K−I )(I)

Figure 4.8: Specification of the SPLICE/AS protocol.
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Assuming κinit = {A,B, I,K+
I ,K

−
I ,K

+
A ,K

+
B , cA, cB , cI}, we arrive at the least fixed

point results of Figure 4.9 by applying the abstract interpretation Aspi([Protocol ]) {| |}ρ φA0

with α1,1 (uniform analysis). Again, the results show the values for untag(ϕA(φA, x)) for

some of the variables, x. The intruder is also capable of constructing further complex terms

from the name subset shown in Figure 4.9.

κ 7→ {A,B, I,K+
I ,K

−
I ,K

+
A ,K

+
B , cA, cB , cI ,

NAI1, NBI1, NAB1, NBA1,MAI1,MBI1,MAB1,MBA1,M
′
IA1,M

′
IB1,net1}

msg1AB1 7→ {M ′AB1} ∪ untag(ϕA(φA, κ)) vAB1 7→ {NAB1} ∪ untag(ϕA(φA, κ))

msg1BA1 7→ {M ′BA1} ∪ untag(ϕA(φA, κ)) vBA1 7→ {NBA1} ∪ untag(ϕA(φA, κ))

msg1AI1 7→ {net1} vAI1 7→ {NAI1} ∪ untag(ϕA(φA, κ))

msg1BI1 7→ {net1} vBI1 7→ {NBI1} ∪ untag(ϕA(φA, κ))

msg2AB1 7→ {MAB1} v′AB1 7→ {NAB1}

msg2BA1 7→ {MBA1} v′BA1 7→ {NBA1}

msg2IA1 7→ {net1} v′IB1 7→ {net1}

msg2IB1 7→ {net1} v′IA1 7→ {net1}

Figure 4.9: Results of analysing the SPLICE/AS protocol.

Examining the results of the abstract interpretation, we find a few irregularities. The

intruder was successful in capturing nonce NAB1 created by A as initiator to B and nonce

NBA1 created by B as initiator to A. Messages MAB1 and MBA1 created in sessions between

A and B were also captured. Additionally, we find that initiators, in communication sessions

involving A and B only, have captured messages from, I, that can be any of I’s names.

In the next chapter on security analysis, we explain these anomalous results in the light

of an impersonation attack that is carried out by I on initiators in communication sessions

involving agents A and B. Assuming that agent A is acting as the initiator and agent B as

the responder (I(B) denotes I masquerading as B), the following steps describe the attack:

Message 1a A→ I(B) : A,B, {A, {N}K+
B
}K−A on cB

Message 1b I → B : I,B, {I, {N}K+
B
}K−I on cB

Message 2b B → I : B, I, {B,N}K+
I

on cI

Message 2a I(B)→ A : B,A, {B,N}K+
A

on cA

Message 3a A→ I(B) : {M}N on cB

Message 4a I(B)→ A : {M ′}N on cA
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The main problem here is in the initiator’s message (Message 1a), which lacks any indication,

inside {N}K+
B

, to the initiator’s identity (A in this case). Further formalisation of the

security breaches of this attack is given in the next chapter on security properties.

4.3.6 The Otway-Rees Protocol Example

The Otway-Rees protocol was introduced in [104] with the purpose of creating session keys

without the use of timestamps. We review here a modified version of the protocol [35]:

Message 1 Init → Resp : N1, Init ,Resp, {N1, Init ,Resp}KInitS
on cResp

Message 2 Resp → S : N1, Init ,Resp, {N1, Init ,Resp}KInitS
,

N2, {N1, Init ,Resp}KRespS
on cS

Message 3 S → Resp : N1, {K,N1}KInitS
, {K,N2}KRespS

on cResp

Message 4 Resp → Init : N1, {K,N1}KInitS
on cInit

Where the initiator and the responder establish a shared session key K with the aid of a

server S with whom they share the long-term secret keys KInitS and KRespS , respectively.

N1 is a nonce created by the initiator and N2 is a nonce created by the responder. We also

add the follow-up messages to indicate that both entities use K as the session key:

Message 5 Init → Resp : {M}K on cResp

Message 6 Resp → Init : {M ′}K on cInit

The specification of the Otway-Rees protocol in the spi calculus is shown in Figure

4.10. F and F ′ are continuation processes of the initiator and the responder processes,

respectively. The non-recursive definitions of Init and Resp simplify the specification and

can be instantiated for any of the honest agents A and B. The initiator, in addition, requires

an extra argument denoting the responder. The server is assumed to be trusted and keeps a

secure database of the long-term secret keys it shares with different agents and the intruder.

Given the initial knowledge of the intruder is set to κinit = {A,B, I, cA, cB , cS ,KIS},

where KIS is the long-term key shared between I and S, applying the abstract interpretation

Aspi([Protocol ]) {| |}ρ φA0 for α1,1 (uniform analysis) reveals the name subset results of Figure

4.11, where we have applied untag(ϕA(φA, x)) for some variables, x. In these results, we

notice that the intruder was capable of capturing additional messages MAB1, MBA1 created

by A and B acting as initiators, and messages M ′AB1, M ′BA1 created by B and A acting as

responders. All these messages were created in protocol sessions involving A and B only.

Also, we find that any of the names in the knowledge of the intruder may appear as values

for the msg1 and msg2 input parameters in sessions involving A and B only. This implies
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Init(X,Y )
def
= (ν NXY )(ν MXY ) (

cY 〈NXY , X, Y, {NXY , X, Y }KXS
〉.

cX(xXY ).let (yXY , zXY ) = xXY in

case zXY of {wXY }KXS
in

let (vXY , uXY ) = wXY in

if uXY = NXY then cY 〈{MXY }vXY
〉.cX(msg2′XY ).

case msg2′XY of {msg2XY }vXY
in F (msg2XY ))

Resp(X,Y )
def
= (ν N ′XY )(ν M ′XY ) (

cY (h′XY ).let (w′XY , g
′
XY , z

′
XY , u

′
XY ) = h′XY in

if g′XY = X then cS〈h′XY , N ′XY , {w′XY , X, z′XY }KY S
〉.

cY (v′XY ).let (t′XY , r
′
XY , s

′
XY ) = v′XY in

case s′XY of {o′XY }KY S
in

let (f ′XY , e
′
XY ) = o′XY in

if e′XY = N ′XY then cX〈t′XY , r′XY 〉.cY (msg1′XY ).

case msg1′XY of {msg1XY }f ′XY
in

cX〈{M ′XY }f ′XY
〉.F ′(msg1XY ))

S
def
= cS(xS).let (uS , x, y, zS , vS , rS) = xS in

(ν Kxy) cy〈uS , {Kxy, uS}KxS
, {Kxy, vS}KyS

〉

Protocol
def
= (ν KAS) !(Init〈A,B〉 | Init〈A, I〉 |

Resp〈B,A〉 | Resp〈I, A〉 | S) |

(ν KBS) !(Init〈B,A〉 | Init〈B, I〉 |

Resp〈A,B〉 | Resp〈I,B〉 | S) |

(ν KIS)(I | !S)

Figure 4.10: The specification of the Otway-Rees protocol.
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κ 7→ {A,B, I, cA, cB , cS ,KIS ,

MAI1,MBI1,M
′
IA1,M

′
IB1,

MAB1,MBA1,M
′
AB1,M

′
BA1,

KAI1,KBI1,KIA1,KIB1,net1}

msg2AB1 7→ {M ′AB1} ∪ untag(ϕA(φA, κ))

msg2BA1 7→ {M ′BA1} ∪ untag(ϕA(φA, κ))

msg2AI1 7→ {net1}

msg2BI1 7→ {net1}

msg1AB1 7→ {MAB1} ∪ untag(ϕA(φA, κ))

msg1BA1 7→ {MBA1} ∪ untag(ϕA(φA, κ))

msg1IB1 7→ {net1}

msg1IA1 7→ {net1}

f ′BA1 7→ {KBA1,KIA1}

f ′IA1 7→ {KIA1}

f ′AB1 7→ {KAB1,KIB1}

f ′IB1 7→ {KIB1}

vBA1 7→ {KBA1,KIB1}

vAI1 7→ {KAI1}

vAB1 7→ {KAB1,KIA1}

vBI1 7→ {KBI1}

Figure 4.11: Results of analysing the Otway-Rees protocol.

that the intruder was successful in passing its knowledge to agents A and B in those sessions.

On the other hand, the f ′AB1, f ′BA1, vAB1 and vBA1 input parameters will be instantiated

with session keys received by B and A. These include the additional keys KIA1 and KIB1.

The anomalous results above are due to the presence of two kinds of impersonation

attacks carried out by the intruder, I. First, we discuss the attack by [106]:

Message 1a A→ I(B) : N1, A,B, {N1, A,B}KAS
on cB

Message 1b I → A : N ′1, I, A, {N ′1, I, A}KIS
on cA

Message 2b A→ I(S) : N ′1, I, A, {N ′1, I, A}KIS
, N ′2, {N ′1, I, A}KAS

on cS

Message 2c I(A)→ S : N ′1, I, A, {N ′1, I, A}KIS
, N1, {N ′1, I, A}KAS

on cS

Message 3b S → I(A) : N ′1, {K,N ′1}KIS
, {K,N1}KAS

on cA
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Message 4a I(B)→ A : N1, {K,N1}KAS
on cA

Message 5a A→ I(B) : {M}K on cB

Message 6a I(B)→ A : {M ′}K on cA

Where I(X) means I masquerading as X. The intruder I manages in this attack to com-

pletely isolate the initiator A by accessing and tampering with messages sent to and from

A and with the aid of a parallel session that it initiates with A. I is capable of using S to

create a bogus key K, which is then passed back to A for use with B (which plays no role

and its part is masqueraded by I). The success of I in carrying out this attack is helped

by nonce N ′2 being sent without encryption in Message 2b, which I then replaces with the

nonce created in the other session where A initiates communication with B.

The second attack we present here is a slightly modified version of the attack first pub-

lished by Boyd and Mao in [28]. In their version, an assumption was made that the server

should not be sensitive to the freshness of the nonces it receives (in other words, it cannot

remember their history). This assumption can be relaxed in our version of the attack, which

is described by the following sequence of messages:

Message 1a I(A)→ B : N1, A,B, {N1, A,B}KIS
on cB

Message 1b I → B : N ′1, I, B, {N ′1, I, B}KIS
on cB

Message 2a B → I(S) : N1, A,B, {N1, A,B}KIS
, N2, {N1, A,B}KBS

on cS

Message 2b B → I(S) : N ′1, I, B, {N ′1, I, B}KIS
, N ′2, {N ′1, I, B}KBS

on cS

Message 2c I(B)→ S : N ′1, I, B, {N ′1, I, B}KIS
, N2, {N ′1, I, B}KBS

on cS

Message 3b S → I(B) : N ′1, {K,N ′1}KIS
, {K,N2}KBS

on cB

Message 3c I(S)→ B : N1, {K,N1}KIS
, {K,N2}KBS

on cB

Message 4b B → I(A) : N1, {K,N1}KIS
on cA

Message 5b I(A)→ B : {M}K on cB

Message 5b B → I(A) : {M ′}K on cA

After which the responder B believes that K is a key shared with A, since it came encrypted

along with the nonce N2 that B created in the session responding to A (more precisely, I(A)).

The reality, however, is that K is shared with I. Again, the key point in the success of I in

playing the role of A lies in the sending of nonces N2 and N ′2 above without encryption in

Messages 2a and 2b. This means that I can utilise this vulnerability to adjust the contents

of those messages. Notice here that the server could not have encountered N ′1 before, and so

no assumption is made about its lack of memory as in [28]. In the next chapter, we formalise

the secrecy and authenticity properties of the protocol.
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4.3.7 The Kerberos Protocol Example

The Kerberos protocol was first introduced as part of project Athena [92] to offer a com-

plete authentication solution. However, the intricacy of the implementation of the protocol

rendered it far from being ideal in the real world. Here, we consider a simplified version of

the Kerberos protocol that uses nonces N1, N2 instead of timestamps. The effect of using

nonces is to prevent replay attacks that normally exploit the validity of timestamps. The

protocol is described by the following sequence of messages [30]:

Message 1 Init → S : Init ,Resp on cS

Message 2 S → Init : {N1,K,Resp, {N1,K, Init}KRespS
}KInitS

on cInit

Message 3 Init → Resp : {N1,K, Init}KRespS
, {Init , N2}K on cResp

Message 4 Resp → Init : {N2}K on cInit

The aim of the protocol is to establish a session key K between two principals, the initiator,

Init , and the responder, Resp, using a trusted server, S, with whom they share the long-term

secret keys, KInitS and KRespS , respectively. The follow-up messages are included as usual:

Message 5 Init → Resp : {M}K on cResp

Message 6 Resp → Init : {M ′}K on cInit

The specifications of the protocol is given in Figure 4.12, where F and F ′ represent the

dummy residual processes of Init and Init , respectively, which do not play any role in the

protocol analysis.

The non-recursive definitions of Init and Resp can be instantiated for any of two honest

agents A and B. Also, the server S is assumed to be trusted and keeps securely a database

of long-term secret keys shared with agents A and B as well as the intruder I. By setting

the knowledge of the intruder to κinit = {A,B, I, cA, cB , cS ,KIS} and applying the abstract

interpretation Aspi([Protocol ]) {| |}ρ φA0 for α1,1 (uniform analysis), we obtain the name

subset results shown in Figure 4.13, after converting these by applying untag(ϕA(φA, x)),

for each variable, x. The results do not reveal any anomalies. The intruder is incapable

of obtaining any knowledge beyond the sessions that it takes part in. The distribution of

messages, keys and nonces to variables is as expected. In the next chapter, we discuss the

secrecy and authenticity properties of this version of the Kerberos protocol.
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Init(X,Y )
def
= (ν NXY )(ν MXY ) (

cS〈X,Y 〉.cX(xXY ).case xXY of {yXY }KXS
in

let (vXY , uXY , wXY , zXY ) = yXY in

cY 〈zXY , {X,NXY }uXY
〉.cX(rXY ).

case rXY of {tXY }uXY
in

if tXY = NXY then cY 〈{MXY }uXY
〉.cX(msg2′XY ).

case msg2′XY of {msg2XY }uXY
in F (msg2XY )

Resp(X,Y )
def
= (ν M ′XY ) (

cY (x′XY ).let (y′XY , z
′
XY ) = x′XY in

case y′XY of {o′XY }KY S
in

let (u′XY , w
′
XY , v

′
XY ) = o′XY in

if v′XY = X then case z′XY of {f ′XY }w′XY
in

let (r′XY , t
′
XY ) = f ′XY in

cX〈{t′XY }w′XY
〉.cY (msg1′XY ).cX〈{M ′XY }w′XY

〉.

case msg1′XY of {msg1XY }w′XY
in F ′(msg1XY ))

S
def
= cS(xS).let (x, y) = xS in

(ν Kxy)(ν N)cx〈{N,Kxy, y, {N,Kxy, x}KyS
}KxS

〉

Protocol
def
= (ν KAS) !(Init〈A,B〉 | Init〈A, I〉 |

Resp〈B,A〉 | Resp〈I, A〉 | S) |

(ν KBS) !(Init〈B,A〉 | Init〈B, I〉 |

Resp〈A,B〉 | Resp〈I,B〉 | S) |

(ν KIS)(I | !S)

Figure 4.12: The specification of the Kerberos protocol.
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κ 7→ {A,B, I, cA, cB , cS ,KIS ,

MAI1,MBI1,M
′
IA1,M

′
IB1,

KAI1,KBI1,KIA1,KIB1,

NAI1, NBI1, N1,net1}

msg2AB1 7→ {M ′AB1}

msg2BA1 7→ {M ′BA1}

msg2AI1 7→ {net1}

msg2BI1 7→ {net1}

msg1AB1 7→ {MAB1}

msg1BA1 7→ {MBA1}

msg1IA1 7→ {net1}

msg1IB1 7→ {net1}

uAB1 7→ {KAB1}

uBA1 7→ {KBA1}

uAI1 7→ {KAI1}

uBI 7→ {KBI1}

w′BA1 7→ {KBA1}

w′IA1 7→ {KIA1}

w′AB1 7→ {KAB1}

w′IB1 7→ {KIB1}

tAB1 7→ {NAB1}

tBA1 7→ {NBA1}

tAI1 7→ {NAI1}

tBI1 7→ {NBI1}

t′BA1 7→ {NBA1}

t′IA1 7→ {net1}

t′AB1 7→ {NAB1}

t′IB1 7→ {net1}

Figure 4.13: The results of analysing the Kerberos protocol.
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4.3.8 The Yahalom Protocol Example

The Yahalom protocol first appeared in [35] with the usual set up of agents as before. Two

participants, the initiator, Init , and the responder, Resp, establish a session key, K, with

the aid of a trusted server, S, with whom they share the long-term secret keys, KInitS and

KRespS , as indicated by the following sequence of messages:

Message 1 Init → Resp : Init , N1 on cResp

Message 2 Resp → S : Resp, {Init , N1, N2}KRespS
on cS

Message 3 S → Init : {Resp,K,N1, N2}KInitS
, {Init ,K}KRespS

on cInit

Message 4 Init → Resp : {Init ,K}KRespS
, {N2}K on cResp

Where N1 and N2 are nonces, created by the initiator and the responder, respectively. We

may also include the follow-up messages as usual, whereby the initiator and the responder

exchange a pair of (secret) messages encrypted with the session key created by the server in

Message 3:

Message 5 Resp → Init : {M ′}K on cInit

Message 6 Init → Resp : {M}K on cResp

The specifications of the Yahalom protocol in the spi calculus is given in Figure 4.14. Here,

F and F ′ are the continuations of the Init and Resp processes, respectively. S is a trusted

server that keeps securely a database of long-term secret keys it shares with agents A and B

as well as the intruder I. The Protocol process represents all the possible communications

involving the two agents, A and B, as well as the intruder, I.

Assuming that the initial knowledge of the intruder is κinit = {A,B, I, cA, cB , cS ,KIS},

where KIS is the key shared between the intruder and the server, then by applying the

abstract interpretation Aspi([Protocol ]) {| |}ρ φA0 for α1,1 (uniform analysis), we obtain a

least fixed point value for φA, which after conversion by untag(ϕA(φA, x)), reveals the name

subset results shown in Figure 4.15 for some variables, x. The result shown for κ reflects

only the name part of the final value. More complex messages can also be composed by the

intruder from the captured names.

These results appear to have correct distribution of session keys, messages and nonces to

variables. Therefore, they do not reveal any anomalies. Further discussion of the secrecy and

authenticity properties of the Yahalom protocol is included in the next chapter on security

analysis.
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Init(X,Y )
def
= (ν NXY )(ν MXY ) (

cY 〈X,NXY 〉.

cX(xXY ).let (yXY , zXY ) = xXY in

case yXY of {oXY }KXS
in

let (uXY , vXY , wXY , rXY ) = oXY in

if wXY = NXY then

cY 〈zXY , {rXY }vXY
〉.cX(msg2′XY ).

cY 〈{MXY }vXY
〉.

case msg2′XY of {msg2XY }vXY
in F (msg2XY ))

Resp(X,Y )
def
= (ν N ′XY )(ν M ′XY ) (

cY (z′XY ).let (x′XY , y
′
XY ) = z′XY in

if x′XY = X then

cS〈Y, {X, y′XY , N ′XY }KY S
〉.

cY (u′XY ).let (s′XY , t
′
XY ) = u′XY in

case s′XY of {w′XY }KY S
in

let (v′XY , r
′
XY ) = w′XY in

case t′XY of {f ′XY }r′XY
in

if f ′XY = N ′XY then

cX〈{M ′XY }r′XY
〉.cY (msg1′XY ).

case msg1′XY of {msg1XY }r′XY
in F ′(msg1XY ))

S
def
= cS(xS).let (y, zS) = xS in

case zS of {wS}KyS
in

let (x, rS , tS) = wS in

(ν Kxy) cx〈{y,Kxy, rS , tS}KxS
, {x,Kxy}KyS

〉

Protocol
def
= (ν KAS) !(Init〈A,B〉 | Init〈A, I〉 |

Resp〈B,A〉 | Resp〈I, A〉 | S) |

(ν KBS) !(Init〈B,A〉 | Init〈B, I〉 |

Resp〈A,B〉 | Resp〈I,B〉 | S) |

(ν KIS)(I | !S)

Figure 4.14: The specification of the Yahalom protocol.
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κ 7→ {A,B, I, cA, cB , cS ,KIS ,MAI1,MBI1,M
′
IA1,M

′
IB1,

KAI1,KBI1,KIA1,KIB1, NAI1, NBI1, N
′
IA1, N

′
IB1,net1}

msg2AB1 7→ {M ′AB1} vAB1 7→ {KAB1} wAB1 7→ {NAB1}

msg2BA1 7→ {M ′BA1} vBA1 7→ {KBA1} wBA1 7→ {NBA1}

msg2AI1 7→ {net1} vAI1 7→ {KAI1} wAI1 7→ {NAI1}

msg2BI1 7→ {net1} vBI1 7→ {KBI1} wBI1 7→ {NBI1}

msg1AB1 7→ {MAB1} r′BA1 7→ {KBA1} f ′BA1 7→ {N ′BA1}

msg1BA1 7→ {MBA1} r′IA1 7→ {KIA1} f ′IA1 7→ {N ′IA1}

msg1IA1 7→ {net1} r′AB1 7→ {KAB1} f ′AB1 7→ {N ′AB1}

msg1IB1 7→ {net1} r′IB1 7→ {KIB1} f ′IB1 7→ {N ′IB1}

Figure 4.15: The results of analysing the Yahalom protocol.

4.3.9 The Woo-Lam One-Way Authentication Protocol Example

A one-way authentication protocol was proposed in [133] using symmetric-key cryptography

and nonces. The protocol aims at authenticating an initiator Init to a responder Resp, but

not vice versa, using a trusted server S. This is achieved by the following modified sequence

of messages, where N is a nonce, and we have included a session key K suggested by the

initiator, Init for further communications with the responder, Resp:

Message 1 Init → Resp : Init on cResp

Message 2 Resp → Init : N on cInit

Message 3 Init → Resp : {N,K}KInitS
on cResp

Message 4 Resp → S : Resp, {Init , {N,K}KInitS
}KRespS

on cS

Message 5 S → Resp : {N,K}KRespS
on cResp

After which the responder Resp is assured of the presence of the initiator Init but Init has

no guarantees as to Resp’s identity. The follow-up message indicates that Resp now trusts

Init :

Message 6 Resp → Init : {M}K on cInit

The above sequence of messages is specified in the spi calculus as in Figure 4.16, where

F and F ′ are the continuation processes of the initiator and the responder, respectively.

Setting the initial knowledge of the intruder to κinit = {A,B, I, cA, cB , cS ,KIS}, where KIS
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Init(X,Y )
def
= (ν KXY ) (

cY 〈X〉.cX(xXY ).cY 〈{xXY ,KXY }KXS
〉.

cX(msg1′XY ).case msg1′XY of {msg1XY }KXY
in

F (msg1XY ))

Resp(X,Y )
def
= (ν N ′XY )(ν M ′XY ) (

cY (z′XY ).if z′XY = X then

cX〈N ′XY 〉.

cY (x′XY ).cS〈Y, {X,x′XY }KY S
〉

cY (u′XY ).case u′XY of {w′XY }KY S
in

let (r′XY , s
′
XY ) = w′XY in

if r′XY = N ′XY then

cX〈{M ′XY }s′XY
〉.F ′

S
def
= cS(xS).let (y, zS) = xS in

case zS of {tS}KyS
in

let (x, uS) = tS in

case uS of {rxy}KxS
in

let (vxy, wxy) = rxy in

cy〈{vxy, wxy}KyS
〉

Protocol
def
= (ν KAS) !(Init〈A,B〉 | Init〈A, I〉 |

Resp〈B,A〉 | Resp〈I, A〉 | S) |

(ν KBS) !(Init〈B,A〉 | Init〈B, I〉 |

Resp〈A,B〉 | Resp〈I,B〉 | S) |

(ν KIS)(I | !S)

Figure 4.16: The specification of the Woo-Lam protocol.
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is the key shared between the intruder, I, and the server, S, and applying the abstract

interpretation Aspi([Protocol ]) {| |}ρ φA0 for α1,1 (uniform analysis), we obtain the results

shown in Figure 4.17, where we have converted the final values of variables shown below, by

applying untag(ϕA(φA, x)) to each variable, x.

κ 7→ {A,B, I, cA, cB , cS ,KIS ,

N ′AB0, N
′
BA0, N

′
IA0, N

′
IB0,M

′
IA0,M

′
IB0,M

′
AB0,M

′
BA0,net0}

msg1AB 7→ {M ′AB0} s′BA 7→ {KBA0} ∪ {untag(ϕA(φA, κ))}

msg1BA 7→ {M ′BA0} s′IA 7→ {net0}

msg1AI 7→ {net0} s′AB 7→ {KAB0} ∪ {untag(ϕA(φA, κ))}

msg1BI 7→ {net0} s′IB 7→ {net0}

xAB 7→ {N ′AB0} ∪ untag(ϕA(φA, κ)) r′BA 7→ {N ′BA0}

xBA 7→ {N ′BA0} ∪ untag(ϕA(φA, κ)) r′IA 7→ {N ′IA0}

xAI 7→ {net0} ∪ untag(ϕA(φA, κ)) r′AB 7→ {N ′AB0}

xBI 7→ {net0} ∪ untag(ϕA(φA, κ)) r′IB 7→ {N ′IB0}

Figure 4.17: The results of analysing the Woo-Lam protocol.

The results of the analysis reveal some irregularities. We find that the input parameters

s′AB and s′BA can obtain any of the names contained in the intruder’s knowledge. The value

of the intruder’s knowledge κ also shows the additional message M ′AB1 created by B and

M ′BA1 created by A. Both these messages were created in communications involving A and

B only. Note that we do not consider the possibility of the intruder using any of the names

of its knowledge to replace the nonce sent by the responder to the initiator in Message 2 as

anomalous, since this message travels in the clear. Replacing would cause the responder not

to accept the protocol.

In the next chapter, we explain an impersonation attack that causes the above anomalous

results and discuss the resulting secrecy and authenticity implications. The intruder I makes

use of a session it initiates with agent B to initiate another session with B but masquerading

in the second session as agent A. The attack was first reported by [7] and a solution was

suggested to avoid it. The following sequence of messages describes the scenario in which

the attack occurs while agent B acting as the responder, where I(A) means I masquerading

as agent A:
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Message 1a I(A)→ B : A on cB

Message 1b I → B : I on cB

Message 2a B → I(A) : N on cA

Message 2b B → I : N ′ on cI

Message 3a I(A)→ B : {N,K}KIS
on cB

Message 3b I → B : {N,K}KIS
on cB

Message 4a B → S : {A, {N,K}KIS
}KBS

on cS

Message 4b B → S : {I, {N,K}KIS
}KBS

on cS

Message 5a S → B : {C}KBS
on cB

Message 5b S → B : {N,K}KBS
on cB

Message 6b B → I(A) : {M}K on cA

Where C is the term resulting from the attempt to decrypt the ciphertext {N,K}KIS
us-

ing KAS , which in the semantics of the spi calculus should result in the decryption case-

statement being blocked since the decryption key KAS is different from the encryption key

KIS . However, the server succeeds in decrypting the second ciphertext, {N,K}KIS
, using

KIS after which it sends back the resulting term encrypted with KBS to agent B. This

leads to B wrongly believing that A is present and active and that it has suggested key K

for further communications. The reason behind this wrong conclusion is the absence of any

relation between B’s request in Message 4 and the reply from the server S in Message 5.

4.4 Conclusion

In this chapter, we have presented abstract interpretations for processes in the π-calculus and

the spi calculus that captures the property of term substitution. The meaning of a process

in the abstract semantics is denoted as a mapping from the variables of that process to sets

of tags denoting terms that could instantiate those variables at runtime. We demonstrated

the safety of the abstract semantics with respect to the concrete non-standard semantics.

The interpretation was applied to a few examples of systems specified in the π-calculus and

the spi calculus. These included the file transfer protocol (FTP), the Needham-Schroeder

(with public keys), SPLICE/AS, Otway-Rees, Kerberos, Yahalom and Woo-Lam protocols.

The abstract interpretations used were uniform; only one copy of each new name, input

parameter and tag in the analysed system were generated throughout the interpretation

(due to the use of integer constraints k = 1 and k′ = 1).
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Chapter 5

Security Properties

5.1 Introduction

We define in this chapter security properties based on the results of the abstract interpreta-

tion established in the previous chapter. More precisely, we reason about term substitutions,

and their secrecy and authenticity implications as a means of gaining information. A process

classified at a low secrecy level could input data created by another high-level process, or

could decrypt a ciphertext revealing the underlying sensitive plaintext if it has the appropri-

ate key. Similarly, data authenticity could be compromised if an untrusted process succeeds

in communicating its data to a highly trusted process. We explain these properties in light

of the examples of the FTP server and cryptographic protocols of the previous chapter.

5.2 Secrecy

In our formalization of the secrecy property, we assume the presence of predefined multilevel

security policies that are determined by the administrators of the systems under analysis.

To express these policies, we assume a finite lattice of secrecy levels, L = (SL,v,u,t,>,⊥),

ranged over by l, l′ ∈ SL with ⊥L being the undefined level and >L being the most sensitive

level. A security policy then attempts to classify processes according to their sensitivity by

assigning to each process its appropriate level. We use the notation dP el to express the fact

that process P is classified (running) at secrecy level, l. The approach to process classification

is flexible but requires that every subprocess within the main specification be assigned some

secrecy level. Usually, the bottom level, ⊥L, is preserved for the intruder’s specification as

given in Section 4.2.3 (for mobile systems) and Section 4.3.3 (for cryptographic protocols).
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This is the safest assumption to make about the intruder’s secrecy property.

In the following, we discuss a variation of the secrecy property, termed process leakage. A

process leakage occurs whenever a process classified at a low secrecy level explicitly obtains

high-level data through one of its input parameters or variables. The meaning of explicitly

obtains depends on the choice of language. In the π-calculus, a process obtains data solely

through communications (instantiating input parameters). On the other hand, processes in

the spi calculus obtain data both due to communications and as a result of the success of

cryptographic operations (instantiating variables), like decryption, verification etc.

5.2.1 Mobile Systems

In order to be able to analyse the secrecy property in the π-calculus, we need to translate

process classifications to name classifications. That is to say, given a process, dP el, running

at secrecy level, l, we need to know the levels of its names, n(P ). Such translation requires

a prior knowledge of the level of the intruder running in parallel with the analysed process.

As we mentioned in the introduction, the safest level given to such an intruder is ⊥L.

For this purpose, we define an environment ζ : N → L that maps names to their secrecy

levels. Initially, ζ0 maps every name to the bottom level. Hence:

∀x ∈ N : ζ0(x) = ⊥L

We also define the union of ζ environments defined as follows:

∀x ∈ N : (ζ1 ∪ζ ζ2)(x) = ζ1(x) t ζ2(x)

To obtain secrecy levels for the bound names of process, P , a special encoding function

Z : P × (N → A)→ (N → A) is needed to construct the final value for ζ. This function is

defined in Figure 5.1. The most interesting cases of the rules for ζ are those of input actions,

dx(y).P el, and restriction, d(ν y)P el, where the bound name, y, is assigned the level of its

process, l. As we mentioned earlier, input parameters are treated in the process leakage

property as the means by which processes gain data, whereas restricted names are treated

as local data. Furthermore, the computation of Z(dP el) ζ will terminate since the process

on the right side of each rule is always a subprocess of the process on the left side.

For simplicity, we have chosen a uniform definition for the ζ function, in the sense that

all the copies of bound names of a process are assigned a single level, which is the level of the

root name appearing in the specification. A more flexible classification would be to assign

different levels to different copies, or in other words, to allow the level of a name to change

during runtime.
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Z(d0el) ζ = ζ

Z(dx(y).P el) ζ = Z(P ) ζ[y 7→ l]

Z(dx〈y〉.P el) ζ = Z(P ) ζ

Z(dif x = y then P else Qel) ζ = Z(P ) ζ ∪ζ Z(Q) ζ

Z(dP +Qel) ζ = Z(P ) ζ ∪ζ Z(Q) ζ

Z(dP | Qel) ζ = Z(P ) ζ ∪ζ Z(Q) ζ

Z(d(ν y)P el) ζ = Z(P ) ζ[y 7→ l]

Z(d!P el) ζ = Z(P ) ζ

Figure 5.1: Rules of the Z(dP el) ζ function for π-calculus processes.

The following predicate formalises the process leakage property. The predicate takes as

input a process, P , analyzes it, and returns true whenever a high-level name, x, is leaked to

some low-level input parameter, y (as a result of some communication).

Property 1 (Process leakage in the π-calculus)

A name, x, is said to be leaked within a process, P , if and only if the following holds true:

φA = Aπ([P ]) ρ0 φA0, ζ = Z(dP el) ζ0,∃y ∈ dom(φA),∃x ∈ ϕA(φA, y) : ζ(y) vL ζ(x)

Where ρ0 may contain the intruder, I, in the case it is running in parallel with P . Hence,

process leakage occurs whenever some low-level process manages to obtain the tag of a name,

which was originally created by some other process with a higher secrecy level.

5.2.2 Cryptographic Protocols

The secrecy property of process leakage defined in the previous section for mobile systems

is extended here to the case of cryptographic systems specified in the spi calculus. For

this purpose, it is necessary to redefine the environment ζ : (V +N)→ L. This is done by

introducing the uniform function, Z(dP el) ζ : P×((V +N)→ L)→ ((V +N)→ L), as shown

in Figure 5.2, which makes use of the union of ζ-environments, ∪ζ , defined in the previous

section. Note that local variables holding the results of the decryption, signature verification

and tuple-splitting processes obtain the levels of those processes. This is consistent with the

manner in which input parameters are classified.

We now extend the predicate of Property 1 of the previous section to the spi calculus.

Property 2 (Process leakage in the spi calculus)

A name, a, is said to be leaked within a process, P , if and only if the following holds true:

φA = Aspi([P ]) ρ0φA0, ζ = Z(dP el) ζ0,∃y ∈ dom(φA),∃a ∈ untag(ϕA(φA, y)) : ζ(y) vL ζ(a)
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Z(d0el) ζ = ζ

Z(dM(y).P el) ζ = Z(P ) ζ[y 7→ l]

Z(dM〈N〉.P el) ζ = Z(P ) ζ

Z(d(ν a)P el) ζ = Z(P ) ζ[a 7→ l]

Z(dP | Qel) ζ = Z(P ) ζ ∪ζ Z(Q) ζ

Z(d!P el) ζ = Z(P ) ζ

Z(dif M = N then P else Qel) ζ = Z(P ) ζ ∪ζ Z(Q) ζ

Z(dlet (x1, . . . , xn) =M in P else Qel) ζ = Z(P ) ζ[x1 7→ l, . . . , xn 7→ l] ∪ζ

Z(Q) ζ[x1 7→ l, . . . , xn 7→ l]

Z(dcase L of {x}N in P else Qel) ζ = Z(P ) ζ[x 7→ l] ∪ζ Z(Q) ζ[x 7→ l]

Z(dcase L of {[x]}N in P else Qel) ζ = Z(P ) ζ[x 7→ l] ∪ζ Z(Q) ζ[x 7→ l]

Z(dcase L of [{x}]N in P else Qel) ζ = Z(P ) ζ[x 7→ l] ∪ζ Z(Q) ζ[x 7→ l]

Figure 5.2: Rules of the Z(dP el) ζ function for spi calculus processes.

The property captures instances where high-level names substitute low-level variables, which

in turn, reflect the levels of their processes. Note that the property only captures the secrecy

of names, as opposed to the secrecy of ciphertexts. This stems from our assumption that

names are the only sensative data whose secrecy may be compromised. Ciphertexts provide

a secure mechanism with which the secure transmission of names is achievable. For example,

in the process a〈k〉.a〈{m}k〉 | a(x).a(y).case y of {z}x in P , it is the secrecy of m, rather

than {m}k, that is undermined by P .

5.3 Authenticity

The treatment of the process leakage property in the previous section was made possible by

using the notion of secrecy levels that distinguished the secrecy requirements of each process

according to a well-defined security policy. In dealing with the authenticity property, the

main notion of interest is that of process trust level . Trust levels, a, a′ ∈ SA, are ordered

by a web of trust such that A = (SA,v,u,t,>,⊥) is a finite lattice with the bottom

element, ⊥A, being the undefined level and the top element, >A, being the most trusted

level. Examples of undefined trust levels include the levels of machines connected to the

Internet, which belong to unknown entities. A well-trusted level, on the other hand, could

be a Certification Authority (CA) in a Public-Key Infrastructure (PKI). The work of [23]

represents one example in which mechanisms for implementing trust levels, called addresses,

are provided as a primitive in an extension of the π-calculus language.
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As a result of the presence of malicious attackers, a threat of process authenticity may

occur in situations where a process obtains data that originated at a trust level lower than

the level of the process itself. Intuitively, such threats are directly comparable to process

leaks. However, with the process leakage property, it is the high-level data that are compro-

mised by a secrecy breach (being obtained by a low-level process), whereas with the process

authenticity property, it is the high-trust process that is compromised by an authenticity

breach (obtaining the low-trust data). We emphasise here the direction of concern, which is

different in each case.

In the following sections, we describe the process authenticity property in the π-calculus

and spi calculus. We write, bP ca, to express the fact that P is running at trust level, a.

The requirement then is to translate process trust levels to name trust levels assuming that

all subprocesses Q of P have the form, bQca′ , for some level a′.

5.3.1 Mobile Systems

In the π-calculus, we translate process trust levels to name trust levels using the environment,

θ : N → A, which maps names to their levels. Initially, θ0 maps every name to the bottom

element, aI = ⊥A, also assumed to be the level of the intruder, I:

∀x ∈ N : θ0(x) = ⊥A

Additionally, we define the union of θ-environments, ∪θ, as follows:

(θ1 ∪θ θ2)(x) = θ1(x) t θ2(x)

This is similar to the union of ζ-environments defined in the previous section on secrecy.

The use of the least upper bound operator t is useful for adding any values of a name from

θ1 and θ2 that are equal to ⊥A.

Defining a special encoding function, U : P × (N → A)→ (N → A), as in Figure 5.3, is

necessary to construct θ from the specification of bP ca. The rules of the U(bP ca) θ function

are directly comparable to their secrecy counterpart given by the Z(dP ea) ζ function (in

fact, the two functions only differ in whether they deal with secrecy or trust levels). The

treatment of bound names is similar. These are assigned the trust levels of their process.

In the case of restricted names, this reflects their locality, whereas in the case of input

parameters, this reflects the fact they are used as means by which the residual process

acquires further information (names). All the other cases do not affect the value of θ.

The following property formalises the process authenticity breach in the π-calculus.
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U(b0ca) θ = θ

U(bx(y).P ca) θ = U(P ) θ[y 7→ a]

U(bx〈y〉.P ca) θ = U(P ) θ

U(bif x = y then P else Qca) θ = U(P ) θ ∪θ U(Q) θ

U(bP +Qca) θ = U(P ) θ ∪θ U(Q) θ

U(bP | Qca) θ = U(P ) θ ∪θ U(Q) θ

U(b(ν x)P ca) θ = U(P ) θ[x 7→ a]

U(b!P ca) θ = U(P ) θ

Figure 5.3: Rules of the U(bP ca) θ function for π-calculus processes.

Property 3 (Process authenticity breach in the π-calculus)

The authenticity of a name, y, is said to be breached within a process, P , if and only if the

following holds true:

φA = Aπ([P ]) ρ0 φA0, θ = U(bP ca) θ0,∃y ∈ dom(φA),∃x ∈ ϕA(φA, y) : θ(y) w θ(x)

Where ρ0 may contain the intruder, I. When compared to the definition of the process

leakage property (Property 1), the direction of the ordering relation clearly demonstrates

the difference in concern. Intuitively, a process authenticity breach occurs whenever a tag,

whose name value has a low trust level, instantiates another name with a higher trust level.

Hence, we are concerned with highly trusted processes obtaining data not at the same level

of trust. This could be as a result of that data originating from malicious sources.

5.3.2 Cryptographic Protocols

We extend here the process authenticity property given in the previous section to crypto-

graphic protocols. A redefinition of the U : P × (N + V → A) → (N + V → A) encoding

function is necessary to construct the environment, θ : N + V → A, for processes in the spi

calculus. The rules of this encoding function are given in Figure 5.4.

From the definition of U(bP ca) θ, we can now redefine the process authenticity breach

property for processes in the spi calculus as follows.

Property 4 (Process authenticity breach in the spi calculus)

The authenticity of a variable, y, is said to be breached within a process, P , if and only if

the following holds true:

φA = Aspi([P ]) ρ0 φA0, θ = U(bP ca) θ0,∃y ∈ dom(φA),∃a ∈ untag(ϕA(φA, y)) : θ(y) w θ(a)
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U(b0ca) θ = θ

U(bM(y).P ca) θ = U(P ) θ[y 7→ a]

U(bM〈N〉.P ca) θ = U(P ) θ

U(b(ν a)P ca) θ = U(P ) θ[a 7→ a]

U(bP | Qca) θ = U(P ) θ ∪θ U(Q) θ

U(b!P ca) θ = U(P ) θ

U(bif M = N then P else Qca) θ = U(P ) θ ∪θ U(Q) θ

U(blet (x1, . . . , xn) =M in P else Qca) θ = U(P ) θ[x1 7→ a, . . . , xn 7→ a] ∪θ

U(Q) θ[x1 7→ a, . . . , xn 7→ a]

U(bcase L of {x}N in P else Qca) θ = U(P ) θ[x 7→ a] ∪θ U(Q) θ[x 7→ a]

U(bcase L of {[x]}N in P else Qca) θ = U(P ) θ[x 7→ a] ∪θ U(Q) θ[x 7→ a]

U(bcase L of [{x}]N in P else Qca) θ = U(P ) θ[x 7→ a] ∪θ U(Q) θ[x 7→ a]

Figure 5.4: Rules of the U(bP ca) θ function for spi calculus processes.

Notice also that only names are captured and not digital signatures. This is due to the

assumption that digital signatures only provide the means by which names (data) are

transmitted in an authentic manner over public channels. For example, in the process

a〈[{m}]k−〉 | a(x).case x of [{y}]k+ in P , if P expects a different name, m′, to instantiate t,

then it is m, rather than [{m}]k− , that breaks the authenticity requirement that P expects

from y. Our treatment of the examples that follow enhances this view.

5.4 Examples

We revisit, in the following sections, the examples of the ftp server and the authentica-

tion protocols and discuss their secrecy and authenticity properties given the results of the

abstract interpretation and the definitions of secrecy and authenticity presented earlier.

5.4.1 The FTP Server Example

The ftp server example we presented in Section 4.2.4 was analysed for two cases. The

first case has a correct specification for the client process, which communicates with the

server without interference from the intruder, whereas the second case has a faulty client

specification that leaks its password to the intruder process, I. We analyse the authenticity

and secrecy properties of both cases of the uniform and non-uniform abstract interpretations.

Secrecy. We adopt the following classification of secrecy levels:
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ftp
def
= d(!start(x).(ν login)(if x = start then d(ν pwd)(Server | Client)el

else d(ν pwd)(Server)el | dIe⊥L)

) | start〈start〉.start〈start〉.start〈start〉.start〈I start〉e⊥L

Server
def
= (ν deal) login(z).if z = pwd then

login(data).(

deal〈data〉 | !deal(w).login〈w〉.login(u).if u = logout then 0

else deal〈u〉 ) else 0

Client
def
= (ν request) (login〈pwd〉.login〈request〉.login(res).login〈logout〉)

With ⊥L v l. By applying the encoding function Z, it is possible to obtain the following

value for the ζ environment, mapping each name to its secrecy level:

ζ(κ) = ζ(x) = ζ(net) = ζ(login) = ζ(logout) = ζ(start) = ζ(I start) = ⊥L
ζ(pwd) = ζ(deal) = ζ(request) = l

The results of the uniform abstract interpretation (correct client specification) with α1 indi-

cate that the intruder is capable of capturing the pwd and request names, both of which have

a higher secrecy level than κ. Refining these results further, we find that the non-uniform

abstract interpretation, with α4, reveals a correct distribution of names to input parameters

in the final value for φA. In particular, the intruder’s knowledge, κ, could not obtain any

names with higher secrecy levels and remained limited to names net , login and logout . In

general, ∀x ∈ dom(φA), y ∈ ϕA(φA, x) : ζ(y) vL ζ(x).

However, examining the results of the second non-uniform abstract interpretation (faulty

client specification) with α4, the analysis captures an instance of a process leakage as defined

by Property 1. This secrecy breach occurs with the value of κ, which captures the secret

password, pwd . Since ζ(pwd) = l and ζ(κ) = ⊥L according to the above name classification,

we have that ζ(κ) v ζ(pwd). It is clear that this breach happened as a result of the client

sending its password over the covert channel, which is a free name recognised by the intruder.

Authenticity. We adopt the following classification for trust levels:

ftp
def
= b(!start(x).(ν login)(if x = start then b(ν pwd)(Server | Client)ca

else b(ν pwd)(Server)ca | bIc⊥A

)
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) | start〈start〉.start〈start〉.start〈start〉.start〈I start〉c⊥A

Server
def
= (ν deal) blogin(z).bif z = pwd then

login(data).(

deal〈data〉 | !deal(w).login〈w〉.login(u).if u = logout then 0

else deal〈u〉 ) else 0cac⊥A

Client
def
= (ν request) (login〈pwd〉.login〈request〉.login(res).login〈logout〉)

With ⊥A v a. Applying the encoding function U to each of the above (sub)processes, it is

possible to construct a θ environment mapping names to their trust levels, as follows:

θ(κ) = θ(x) = θ(z) = θ(net) = θ(login) = θ(logout) = θ(start) = θ(I start) = ⊥A
θ(pwd) = θ(deal) = θ(request) = a

In both analyses (with correct and faulty client specifications) with α4, we find that input

parameters captured the appropriate names. In general, ∀x ∈ dom(φA), y ∈ ϕA(φA, x) :

θ(x) vA θ(y). Hence, no instance of the process authenticity breach occurs (Property 3).

The case of the faulty client is interesting, since the intruder, I, failed in passing its low-

level data to the clients, even though it clearly breaches the secrecy of their passwords as

indicated above. This is due to the fact that the passwords are per login session, i.e. each

time a copy of the system is spawned the passwords and the login channel are renamed.

Hence, the intruder cannot use a password it obtains from the client in its own session with

the FTP server. Attempting to do that means that it will fail as a result of the conditional

process that the server runs and that maintains a correct distribution of password-login

session names. Hence, the authenticity property is preserved despite a failure in the secrecy

property of the protocol.

5.4.2 The Needham-Schroeder Public-Key Protocol Example

As we mentioned in Section 4.3.4, the Needham-Schroeder public-key protocol is suscepti-

ble to a form of impersonation attack, i.e. the man-in-the-middle attack, which was first

discovered and fixed by Lowe [87]. From the results of the abstract interpretation given

in Figure 4.7 (Section 4.3.4), we find that this attack is captured in the final fixed point

value of φA. The fact that the intruder obtained nonces N ′AB1, N ′BA1 and messages M ′AB1,

M ′BA1 demonstrates the success of this attack. The intruder was capable of accessing and
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tampering with nonces and messages from A to B and vice versa. The intruder also succeeds

in passing untag(ϕA(φA, κ)) to both B and A through variables msg2AB1 and msg2BA1.

Authenticity. To discuss the authenticity property of the Needham-Schroeder protocol,

we apply the following trust-level classifications to the protocol of Figure 4.6 (Section 4.3.4):

b(ν K−A ) !(bInit〈A,B〉ca | bInit〈A, I〉c⊥A | bResp〈B,A〉ca | bResp〈I, A〉c⊥A)ca

b(ν K−B ) !(bInit〈B,A〉ca | bInit〈B, I〉c⊥A | bResp〈A,B〉ca | bResp〈I,B〉c⊥A)ca

b(ν K−I )(I)c⊥A

Where ⊥A v a. From this classification, we obtain the following value for θ by the applica-

tion of U(Protocol) θ0:

θ(msg1AB) = θ(msg1BA) = θ(msg2AB) = θ(msg2BA) = a

θ(msg1AI) = θ(msg1BI) = θ(msg2IA) = θ(msg2IB) = ⊥A
θ(κ) = θ(net) = ⊥A
θ(NAB) = θ(NBA) = θ(N ′AB) = θ(N ′BA) = θ(MAB) = θ(MBA) = θ(M ′AB) = θ(M ′BA) =

θ(vAB) = θ(vBA) = θ(r′AB) = θ(r′BA) = θ(h′AB) = θ(h′BA) = θ(rAB) = θ(rBA) = a

θ(NAI) = θ(NBI) = θ(N ′IB) = θ(N ′IA) = θ(MAI) = θ(MBI) = θ(M ′IB) = θ(M ′IA) =

θ(vAI) = θ(vBI) = θ(r′IB) = θ(r′IA) = θ(v′IA) = θ(h′IA) = θ(rAI) = θ(rBI) = ⊥A

It is clear from these classifications and the result of the abstract interpretation of Figure

4.7 (Section 4.3.4) that the process authenticity property is not preserved. For example,

we have that any of the intruder’s fresh data can be captured by agent B acting as the

responder to A. Hence, net ∈ untag(ϕA(φA,msg2AB)) and since θ(net) v θ(msg2AB), we

have an instance of Property 4 indicating a breach in process authenticity. The same applies

to msg2BA.

Secrecy. We first classify the processes in the specification of the Needham-Schroeder

protocol according to their secrecy requirements, as follows:

d(ν K−A ) !(dInit〈A,B〉el | dInit〈A, I〉e⊥L | dResp〈B,A〉el | dResp〈I, A〉e⊥L)el

d(ν K−B ) !(dInit〈B,A〉el | dInit〈B, I〉e⊥L | dResp〈A,B〉el | dResp〈I,B〉e⊥L)el

d(ν K−I )(I)e⊥L

Where ⊥L v l. Next, we obtain the value for ζ by the application of Z(Protocol) ζ0:
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ζ(msg1AB) = ζ(msg1BA) = ζ(msg2AB) = ζ(msg2BA) = l

ζ(msg1AI) = ζ(msg1BI) = ζ(msg2IA) = ζ(msg2IB) = ⊥L
ζ(κ) = ζ(net) = ⊥L
ζ(NAB) = ζ(NBA) = ζ(N ′AB) = ζ(N ′BA) = ζ(MAB) = ζ(MBA) = ζ(M ′AB) = ζ(M ′BA) =

ζ(vAB) = ζ(vBA) = ζ(r′AB) = ζ(r′BA) = ζ(h′AB) = ζ(h′BA) = ζ(rAB) = ζ(rBA) = l

ζ(NAI) = ζ(NBI) = ζ(N ′IB) = ζ(N ′IA) = ζ(MAI) = ζ(MBI) = ζ(M ′IB) = ζ(M ′IA) =

ζ(vAI) = ζ(vBI) = ζ(r′IB) = ζ(r′IA) = ζ(rBI) = ζ(rAI) = ζ(h′IB) = ζ(h′IA) = ⊥L

Considering the results of the abstract interpretation of Figure 4.7 (Section 4.3.4), it is clear

that instances of the process leakage property occur, as the intruder is capable of capturing

highly classified data. For example, M ′AB1 ∈ untag(ϕA(φA, κ)), which is a message created

by B in response to A. Given that ζ(κ) v ζ(M ′AB1), we have an instance of Property 2.

5.4.3 The SPLICE/AS Protocol Example

Examining the results of the abstract interpretation of Figure 4.9 (Section 4.3.5), we find

that the attack mentioned by [42] has caused anomalous values to appear in the intruder’s

knowledge, κ. These values are messages and nonces created by initiators in sessions in-

volving A and B only. Also, the intruder succeeds in passing its knowledge as values for

messages received by the initiator in sessions with the honest responder.

Authenticity. To discuss the authenticity property of the SPLICE/AS protocol as spec-

ified in Figure 4.8 (Section 4.3.5), we use the following trust-level classifications:

b(ν K−A ) !(bInit〈A,B〉ca | bInit〈A, I〉c⊥A | bResp〈B,A〉ca | bResp〈I, A〉c⊥A)ca

b(ν K−B ) !(bInit〈B,A〉ca | bInit〈B, I〉c⊥A | bResp〈A,B〉ca | bResp〈I,B〉c⊥A)ca

b(ν K−I )(I)c⊥A

Where ⊥A v a. From this classification, we obtain the following value for θ by the applica-

tion of U(Protocol) θ0:

θ(msg1AB) = θ(msg1BA) = θ(msg2AB) = θ(msg2BA) = a

θ(msg1AI) = θ(msg1BI) = θ(msg2IA) = θ(msg2IB) = ⊥A
θ(κ) = θ(net) = ⊥A
θ(NAB) = θ(NBA) = θ(MAB) = θ(MBA) = θ(M ′AB) = θ(M ′BA) = θ(vAB) = θ(vBA) =

θ(v′AB) = θ(v′BA) = a

θ(NAI) = θ(NBI) = θ(MAI) = θ(MBI) = θ(M ′IB) = θ(M ′IA) = θ(vAI) = θ(vBI) =

θ(v′IB) = θ(v′IA) = ⊥A
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Examining the results of the abstract interpretation given in Figure 4.9 (Section 4.3.5) in

light of the above value for θ, we find that authenticity is breached. For example, consider

the value of the msg1AB1 variable, which belongs to agent A acting as the initiator of

the protocol to agent B. Here, we find that the result net1 ∈ untag(ϕA(φA,msg1AB1))

is possible, and due to the classification θ(net1) v θ(msg1AB1), we have an instance of

Property 4, i.e. process authenticity breach. A similar breach also occurs with msg1BA1.

Secrecy. We adopt the following classification of secrecy levels for SPLICE/AS protocol:

d(ν K−A ) !(dInit〈A,B〉el | dInit〈A, I〉e⊥L | dResp〈B,A〉el | dResp〈I,A〉e⊥L)el

d(ν K−B ) !(dInit〈B,A〉el | dInit〈B, I〉e⊥L | dResp〈A,B〉el | dResp〈I,B〉e⊥L)el

d(ν K−I )(I)e⊥L

Where ⊥L v l. One can now obtain the following value for ζ by applying Z(Protocol) ζ0:

ζ(msg1AB) = ζ(msg1BA) = ζ(msg2AB) = ζ(msg2BA) = l

ζ(msg1AI) = ζ(msg1BI) = ζ(msg2IA) = ζ(msg2IB) = ⊥L
ζ(κ) = ζ(net) = ⊥L
ζ(NAB) = ζ(NBA) = ζ(MAB) = ζ(MBA) = ζ(vAB) = ζ(vBA) = ζ(v′AB) = ζ(v′BA) = l

ζ(NAI) = ζ(NBI) = ζ(MAI) = ζ(MBI) = ζ(vAI) = ζ(vBI) = ζ(v′IB) = ζ(v′IA) = ⊥L

The results of the abstract interpretation of Figure 4.9 (Section 4.3.5) demonstrate breaches

in the process leakage property, as the intruder is capable of capturing data created by agents

A and B in sessions involving these two agents. For example, MAB1 ∈ untag(ϕA(φA, κ)),

which is a message created by A initiating a session with B. Given that ζ(κ) v ζ(MAB1),

we have an instance of Property 2.

5.4.4 The Otway-Rees Protocol Example

As we mentioned in Section 4.3.6, the version of the Otway-Rees protocol specified in Fig-

ure 4.10 is vulnerable to two forms of impersonation attacks, published in [106] and [28].

Furthermore, we find that these attacks caused anomalous results in Figure 4.11 (Section

4.3.6). The intruder was successful in obtaining messages MAB1, MBA1, M ′AB1 and M ′BA1

from sessions involving A and B only. Also the presence of keys KIA1 and KIB1 shared

between the intruder and agents A and B in the values for the variables f ′AB1, f ′BA1, vAB1

and vBA1 indicates the presence of extra communication sessions. Finally, we find that any
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of the names in the intruder’s knowledge, κ, can be passed as messages to agents A and B

in sessions involving these two agents alone.

Authenticity. The authenticity property of the Otway-Rees protocol is discussed under

the following trust address classifications:

b(ν KAS) !(bInit〈A,B〉ca | bInit〈A, I〉c⊥A | bResp〈B,A〉ca | bResp〈I,A〉c⊥A)ca

b(ν KBS) !(bInit〈B,A〉ca | bInit〈B, I〉c⊥A | bResp〈A,B〉ca | bResp〈I,B〉c⊥A)ca

b(ν KIS)(I)c⊥A

Where ⊥A v a, and we drop the server S since we are not interested in its security properties.

From this classification, we obtain the following value for θ by the application of U to the

above processes:

θ(msg1AB) = θ(msg1BA) = θ(msg2AB) = θ(msg2BA) = a

θ(msg1AI) = θ(msg1BI) = θ(msg2IA) = θ(msg2IB) = ⊥A
θ(κ) = θ(net) = ⊥A
θ(MAB) = θ(MBA) = θ(M ′AB) = θ(M ′BA) = θ(vAB) = θ(vBA) = θ(f ′AB) = θ(f ′BA) = a

θ(MAI) = θ(MBI) = θ(M ′IB) = θ(M ′IA) = θ(vAI) = θ(vBI) = θ(f ′IB) = θ(f ′IA) = ⊥A

We find breaches of the process authenticity property. Taking the case of initiator A

as an example, we have from the first attack that, net1 ∈ untag(ϕA(φA,msg2AB1)), is

a possible instantiation for the msg2AB1 variable owned by A. Hence, we have that

θ(net1) v θ(msg2AB1). The authenticity breach occurs as a result of the address clas-

sification above, which states that θ(net1) = ⊥A and θ(msg2AB1) = a. In the case of

the second attack, and taking the example case of B as the responder, we have that,

net1 ∈ untag(ϕA(φA,msg1AB1)), is a possible instantiation. The process authenticity prop-

erty is breached again as θ(net1) v θ(msg1AB1), where θ(net1) = ⊥A and θ(msg1AB1) = a.

Secrecy. Consider the following secrecy classification for the Otway-Rees protocol:

d(ν KAS) !(dInit〈A,B〉el | dInit〈A, I〉e⊥L | dResp〈B,A〉el | dResp〈I, A〉e⊥L)el

d(ν KBS) !(dInit〈B,A〉el | dInit〈B, I〉e⊥L | dResp〈A,B〉el | dResp〈I,B〉e⊥L)el

d(ν KIS)(I)e⊥A

Where ⊥L v l, and we are not interested in the security level of the server S. It is now
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possible to construct ζ by applying Z to the above classified processes. This will result in

the following value for ζ:

ζ(msg1AB) = ζ(msg1BA) = ζ(msg2AB) = ζ(msg2BA) = l

ζ(msg1AI) = ζ(msg1BI) = ζ(msg2IA) = ζ(msg2IB) = ⊥L
ζ(κ) = ζ(net) = ⊥L
ζ(MAB) = ζ(MBA) = ζ(M ′AB) = ζ(M ′BA) = ζ(vAB) = ζ(vBA) = ζ(f ′AB) = ζ(f ′BA) = l

ζ(MAI) = ζ(MBI) = ζ(M ′IB) = ζ(M ′IA) = ζ(vAI) = ζ(vBI) = ζ(f ′IB) = ζ(f ′IA) = ⊥L

The attacks mentioned in Section 4.3.6 introduce breaches in the secrecy of messages created

by agents A and B in the Otway-Rees protocol. Again we refer to the results of the abstract

interpretation of Figure 4.11 (Section 4.3.6) where we find that for the case of the first attack,

messages created by A and B as initiators end up in I’s knowledge, as {MAB1,MBA1} ⊆

untag(ϕA(φA, κ)). From the second attack, we have that messages created by A and B

as responders are captured by I, as {M ′AB1,M
′
BA1} ⊆ φA(κ). Taking messages MAB1 and

M ′AB1 as examples, we have that ζ(κ) v ζ(MAB1) and ζ(κ) v ζ(M ′AB1) since from the

above classification, we have ζ(κ) = ⊥L and ζ(MAB1) = ζ(M ′AB1) = a. Hence, instances of

process leakage property as stated in Property 2 occur in the above results.

5.4.5 The Kerberos Protocol Example

The results of the abstract interpretation of the version of the Kerberos protocol given in

Section 4.3.7 reveal correct distributions of keys and nonces created by the server S for the

different sessions. For example, we find that all the keys KIX and KXI for X ∈ {A,B} are

assigned to input parameters u and w′ only belonging to sessions where A or B communicate

with I. The intruder naturally obtains these keys in its knowledge. Similarly, nonces NIX

and NXI are only bound to variables t, t′ and κ in sessions involving I.

Authenticity. To analyse the authenticity property of the Kerberos protocol, we assume

the following classification of trust levels for the specification of the Kerberos protocol as

given in Figure 4.12 (Section 4.3.7):

b(ν KAS) !(bInit〈A,B〉ca | bInit〈A, I〉c⊥A | bResp〈B,A〉ca | bResp〈I,A〉c⊥A)ca

b(ν KBS) !(bInit〈B,A〉ca | bInit〈B, I〉c⊥A | bResp〈A,B〉ca | bResp〈I,B〉c⊥A)ca

b(ν KIS)(I)c⊥A
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Where ⊥A v a, and we drop the server S since we are not interested in its security properties.

From this classification, we obtain the following value for θ by the application of U to the

above processes:

θ(msg1AB) = θ(msg1BA) = θ(msg2AB) = θ(msg2BA) = a

θ(msg1AI) = θ(msg1BI) = θ(msg2IA) = θ(msg2IB) = ⊥A
θ(κ) = θ(net) = ⊥A
θ(NAB) = θ(NBA) = θ(MAB) = θ(MBA) = θ(M ′AB) = θ(M ′BA) = θ(uAB) = θ(uBA) =

θ(w′AB) = θ(w′BA) = θ(tAB) = θ(tBA) = θ(t′AB) = θ(t′BA) = a

θ(NAI) = θ(NBI) = θ(MAI) = θ(MBI) = θ(M ′IB) = θ(M ′IA) = θ(uAI) = θ(uBI) =

θ(w′IB) = θ(w′IA) = θ(tAI) = θ(tBI) = θ(t′IB) = θ(t′IA) = ⊥A

From the results of the abstract interpretation of Figure 4.13 (Section 4.3.7) and taking as an

example input variables msg2AB and msg1AB , we have, MAB1 ∈ untag(ϕA(φA,msg1AB1))

and M ′AB1 ∈ untag(ϕA(φA,msg2AB1)) are possible values. Referring to the above classi-

fication of variables and messages, we have that θ(MAB1) = θ(msg1AB1) and θ(M ′AB1) =

θ(msg2AB1) since θ(MAB1) = θ(M ′AB1) = a and θ(msg1AB1) = θ(msg2AB1) = a. The

same statement is true about the rest of the variables in the domain of φA (except for u

and w′, which capture the keys created by the server). These results demonstrate that no

breaches of the process authenticity property as defined in Property 4 have occurred.

Secrecy. We adopt the following secrecy classification for processes in the specification of

the Kerberos protocol 4.12 (Section 4.3.7):

d(ν KAS) !(dInit〈A,B〉el | dInit〈A, I〉e⊥L | dResp〈B,A〉el | dResp〈I, A〉e⊥L)el

d(ν KBS) !(dInit〈B,A〉el | dInit〈B, I〉e⊥L | dResp〈A,B〉el | dResp〈I,B〉e⊥L)el

d(ν KIS)(I)e⊥A

Where ⊥L v l, and we are not interested in the security level of the server S. To evaluate

ζ, we apply Z to the above classified processes. This will result in the following value:

ζ(msg1AB) = ζ(msg1BA) = ζ(msg2AB) = ζ(msg2BA) = l

ζ(msg1AI) = ζ(msg1BI) = ζ(msg2IA) = ζ(msg2IB) = ⊥L
ζ(κ) = ζ(net) = ⊥L
ζ(NAB) = ζ(NBA) = ζ(MAB) = ζ(MBA) = ζ(M ′AB) = ζ(M ′BA) = ζ(uAB) = ζ(uBA) =
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ζ(w′AB) = ζ(w′BA) = ζ(tAB) = ζ(tBA) = ζ(t′AB) = ζ(t′BA) = l

ζ(NAI) = ζ(NBI) = ζ(MAI) = ζ(MBI) = ζ(M ′IB) = ζ(M ′IA) = ζ(uAI) = ζ(uBI) =

ζ(w′IB) = ζ(w′IA) = ζ(tAI) = ζ(tBI) = ζ(t′IB) = ζ(t′IA) = ⊥L

The secrecy property of messages exchanged between A and B in the presence of I is also

preserved as a result of the inability of the intruder I to undermine any of the session keys cre-

ated for communications between A and B. More accurately, we find from the abstract inter-

pretation of the protocol (Figure 4.13, Section 4.3.7) that KAB1,KBA1 /∈ untag(ϕA(φA, κ))

for all the instances of the session keys created for communications A and B. As a result, the

interpretation reveals that MAB1,MBA1,M
′
AB1,M

′
BA1 /∈ untag(ϕA(φA, κ)). For the remain-

ing keys and messages captured by untag(ϕA(φA, κ)), we have that ζl(MAI1) = ζl(MBI1) =

ζl(M
′
IA1) = ζl(M

′
IB1) = ⊥L. Therefore, the secrecy of messages created in sessions between

A and B is preserved according to the process leakage definition in Property 2.

5.4.6 The Yahalom Protocol Example

The uniform abstract interpretation of the Yahalom protocol in Section 4.3.8 demonstrated

correct distributions of session keys and messages among the participants in the protocol

including the intruder I. This is despite the possibility of some replay attacks that were

reported by Paulson in [105] and that are based on compromised old session keys. Since

we do not emphasize the behaviour of agents A and B after they exchange the follow-up

messages (i.e. the continuation processes F (msg2) and F ′(msg1)), the results of our abstract

interpretation are not as sensitive as the results of [105].

Authenticity. We adopt the following trust-level classifications for processes in the Ya-

halom protocol specification given in Figure 4.14 (Section 4.3.8), except for the server:

b(ν KAS) !(bInit〈A,B〉ca | bInit〈A, I〉c⊥A | bResp〈B,A〉ca | bResp〈I,A〉c⊥A)ca

b(ν KBS) !(bInit〈B,A〉ca | bInit〈B, I〉c⊥A | bResp〈A,B〉ca | bResp〈I,B〉c⊥A)ca

b(ν KIS)(I)c⊥A

Where ⊥A v a. The following θ is obtained by the application of U to the above processes:

θ(msg1AB) = θ(msg1BA) = θ(msg2AB) = θ(msg2BA) = a

θ(msg1AI) = θ(msg1BI) = θ(msg2IA) = θ(msg2IB) = ⊥A
θ(κ) = θ(net) = ⊥A
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θ(NAB) = θ(NBA) = θ(N ′AB) = θ(N ′BA) = θ(MAB) = θ(MBA) = θ(M ′AB) = θ(M ′BA) =

θ(vAB) = θ(vBA) = θ(r′AB) = θ(r′BA) = θ(wAB) = θ(wBA) = θ(f ′AB) = θ(f ′BA) = a

θ(NAI) = θ(NBI) = θ(N ′IB) = θ(N ′IA) = θ(MAI) = θ(MBI) = θ(M ′IB) = θ(M ′IA) =

θ(vAI) = θ(vBI) = θ(r′IB) = θ(r′IA) = θ(wAI) = θ(wBI) = θ(f ′IB) = θ(f ′IA) = ⊥A

From the results of the abstract interpretation of Figure 4.15 (Section 4.3.8) and the above

classifications, no breaches of the process authenticity property (Property 4) are detected.

Secrecy. We adopt the following secrecy classification for the Yahalom protocol:

d(ν KAS) !(dInit〈A,B〉el | dInit〈A, I〉e⊥L | dResp〈B,A〉el | dResp〈I, A〉e⊥L)el

d(ν KBS) !(dInit〈B,A〉el | dInit〈B, I〉e⊥L | d!Resp〈A,B〉el | dResp〈I,B〉e⊥L)el

d(ν KIS)(I)e⊥L

Where ⊥L v l. We now construct ζ by applying Z to the above processes:

ζ(msg1AB) = ζ(msg1BA) = ζ(msg2AB) = ζ(msg2BA) = l

ζ(msg1AI) = ζ(msg1BI) = ζ(msg2IA) = ζ(msg2IB) = ⊥L
ζ(κ) = ζ(net) = ⊥L
ζ(NAB) = ζ(NBA) = ζ(N ′AB) = ζ(N ′BA) = ζ(MAB) = ζ(MBA) = ζ(M ′AB) = ζ(M ′BA) =

ζ(vAB) = ζ(vBA) = ζ(r′AB) = ζ(r′BA) = ζ(wAB) = ζ(wBA) = ζ(f ′AB) = ζ(f ′BA) = l

ζ(NAI) = ζ(NBI) = ζ(N ′IB) = ζ(N ′IA) = ζ(MAI) = ζ(MBI) = ζ(M ′IB) = ζ(M ′IA) =

ζ(vAI) = ζ(vBI) = ζ(r′IB) = ζ(r′IA) = ζ(wAI) = ζ(wBI) = ζ(f ′IB) = ζ(f ′IA) = ⊥L

Again similar to the authenticity property, we find that the results of the abstract inter-

pretation of Figure 4.15 (Section 4.3.8) have revealed no instances of the process leakage

property (Property 2) in the light of the above secrecy-level classifications.

5.4.7 The Woo-Lam Protocol Example

We review here the authenticity and secrecy properties of the Woo-Lam protocol, as specified

by the version of Figure 4.16 in Section 4.3.9. The results of the abstract interpretation of

Figure 4.17 (Section 4.3.9) revealed some anomalous values for the κ, s′AB and s′BA variables.

These values are caused by the attack discovered by [7] and reviewed in Section 4.3.9.
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Authenticity. Consider the following classifications of trust levels for the specification of

the Woo-Lam protocol:

b(ν KAS) !(bInit〈A,B〉ca | bInit〈A, I〉c⊥A | b!Resp〈B,A〉ca | bResp〈I, A〉c⊥A)ca

b(ν KBS) !(bInit〈B,A〉ca | bInit〈B, I〉c⊥A | b!Resp〈A,B〉ca | bResp〈I,B〉c⊥A)ca

b(ν KIS)(I)c⊥A

Where ⊥A v a, and we drop the server S since we are not interested in its security properties.

From this classification, we obtain the following value for θ by the application of U to the

above processes:

θ(msg1AB) = θ(msg1BA) = θ(msg2AB) = θ(msg2BA) = a

θ(msg1AI) = θ(msg1BI) = θ(msg2IA) = θ(msg2IB) = ⊥A
θ(κ) = θ(net) = ⊥A
θ(N ′AB) = θ(N ′BA) = θ(M ′AB) = θ(M ′BA) = θ(s′AB) = θ(s′BA) = θ(xAB) = θ(xBA) =

θ(r′AB) = θ(r′BA) = a

θ(N ′IA) = θ(N ′IB) = θ(M ′IB) = θ(M ′IA) = θ(s′IB) = θ(s′IA) = θ(xAI) = θ(xBI) = θ(r′IB) =

θ(r′IA) = ⊥A

Analysing the results of the abstract interpretation along with the above classifications

reveals the success of the attack of [7] in undermining the process authenticity property

as defined by Property 4. This is clear from the values of the s′AB and s′BA variables.

For example, we have that net1 ∈ untag(ϕA(φA, s
′
AB1)) and net1 ∈ untag(ϕA(φA, s

′
BA1))

are possible instantiations of these variables. From the above value for θ, we have that

θ(net1) v θ(s′AB1) and θ(net1) v θ(s′AB1), since θ(net1) = ⊥A and θ(s′AB1) = θ(s′AB1) = a.

Secrecy. For analysing the secrecy property for the Woo-Lam protocol, we adopt the

following secrecy level classifications for the involved processes, except S:

d(ν KAS) !(dInit〈A,B〉el | dInit〈A, I〉e⊥L | dResp〈B,A〉el | dResp〈I, A〉e⊥L)el

d(ν KBS) !(dInit〈B,A〉el | dInit〈B, I〉e⊥L | dResp〈A,B〉el | dResp〈I,B〉e⊥L)el

d(ν KIS)(I)e⊥A

Where ⊥L v l. Computing ζ results in the following value:
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ζ(msg1AB) = ζ(msg1BA) = ζ(msg2AB) = ζ(msg2BA) = l

ζ(msg1AI) = ζ(msg1BI) = ζ(msg2IA) = ζ(msg2IB) = ⊥L
ζ(κ) = ζ(net) = ⊥L
ζ(N ′AB) = ζ(N ′BA) = ζ(M ′AB) = ζ(M ′BA) = ζ(s′AB) = ζ(s′BA) = ζ(xAB) = ζ(xBA) =

ζ(r′AB) = ζ(r′BA) = l

ζ(N ′IA) = ζ(N ′IB) = ζ(M ′IB) = ζ(M ′IA) = ζ(s′IB) = ζ(s′IA) = ζ(xAI) = ζ(xBI) = ζ(r′IB) =

ζ(r′IA) = ⊥L

The secrecy property of the Woo-Lam protocol is also breached according to Property 2.

This is clear from examining the final value of the intruder’s knowledge, κ. We find that

M ′AB1,M
′
BA1 ∈ untag(ϕA(φA, κ)), both of which were created by agents A and B in com-

munications involving these two agents alone. Process leakage occurs since ζ(κ) v ζ(M ′AB1)

where ζ(κ) = ⊥L and ζ(M ′AB1) = l. The same argument applies to M ′BA1 captured by

untag(ϕA(φA, κ)).

5.5 Conclusion

In this chapter, we have formally defined the notions of secrecy and authenticity of infor-

mation in processes specified in the π-calculus and the spi calculus. The secrecy property is

centred on the idea of a low-level process obtaining high-level data, whereas the authentic-

ity property is based on the reverse idea of a high-level process capturing data created by

low-level processes. These definitions were then combined with the results of the abstract

interpretation of the system examples given earlier in Chapter 4, for detecting instances of

secrecy and authenticity breaches in those systems. In the FTP example, we demonstrated

that using per-session passwords (once-off passwords) protects authenticity, even though the

passwords were leaked after their usage. For the case of authentication protocols, the secu-

rity analysis detected the man-in-the-middle-attack in the Needham-Schroeder public-key

protocol. It also detected well-known impersonation attacks in the SPLICE/AS, Otway-Rees

and Woo-Lam protocols. No attacks were found in the Kerberos or the Yahalom protocols.
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Chapter 6

Automatic Tools

6.1 Introduction

In this chapter, we review briefly two implementations of the abstract interpretation and the

process leakage analysis as presented in Chapters 4 and 5, respectively. Two initial proto-

types were developed: Picasso, a static analyser for processes in the π-calculus, and Spicasso,

its cryptographic sibling for the language of the spi calculus. The programming language

used is Objective Caml (OCaml) version 3.02, a functional programming environment.

6.2 Picasso: A Pi-Calculus Analyser for Secrecy and

Security Objectives

The Picasso program is a direct implementation of the abstract semantics of the π-calculus

discussed in Section 4.2.2 and its current version incorporates the secrecy property of process

leakage (Property 1, Section 5.2.1). The program receives as its main input the specification

of the process under analysis (along with other parameters related to context information and

uniformity of the analysis), and returns information about any term (name) substitutions

that may take place in that process. The process leakage function also permits the detection

of any instances of the process leakage threat in the analysed process. These are captured

as lists signifying the leaked names.

The design of the Picasso program is fully modular. The main modules are described in

the following paragraphs, along with the main type and functions in each module.
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Module Process. This module introduces a π-calculus process type as shown in Figure

6.1, and some functions on processes (e.g. for performing substitutions and labelling bound

names and tags).

type name = string

and process = NULL

| INPUT of name * name * process

| OUTPUT of name * name * process

| MATCH of name * name * process

| MISMATCH of name * name * process

| REST of name * process

| SUM of process * process

| COM of process * process

| REP of process

Figure 6.1: The name and process data types in Picasso.

For example, the process:

x(y).y(z).0 | (ν data)(ν Info) x〈datat1〉.data〈Infot2〉.0

instantiates the following type:

Process.COM(Process.INPUT("x","y",Process.INPUT("y","z",Process.NULL)),

Process.REST("Data",Process.REST("Info",Process.OUTPUT("x","t1",

Process.OUTPUT("Data","t2",Process.NULL)))))

While it keeps a mapping from tags to their name values. Hence, Data can be retrieved

from t1 and Info can be retrieved from t2.

Module Phi. The main type in this module is the type denoting φA environments:

phi = (Process.name * Process.name list) list

This type represents a list of pairs. The first element of each pair belongs to the set of

variables of the analysed process (input parameters in the case of the π-calculus) and the

second element is a list of names denoting possible tags instantiating that variable. For

example, the following value for φA:

119



φA =


x1 7→ {t1}

x2 7→ {t1, t2}

x3 7→ {t1, t2, t3}


is represented as the type instantiation:

- : (Process.name * Process.name list) list =

[("x1", ["t1"]); ("x2", ["t1";"t2"]);("x3", ["t1";"t2";"t3"])]

Module Rho. This module introduces the ρ multiset and other related functions over ρ.

The ρ multiset is represented as a list of processes composed with the analysed process:

type rho = Process.process list

Where Process.process is the process data type defined in module Process.

Module Picasso. This is the main abstract interpretation module for the π-calculus. The

abstract semantic relation Aπ([P ]) ρ φA is defined by the following function signature:

val picasso : Process.process -> Process.process list -> int ->

Process.name list -> (Process.name * Process.name list) list

where the function takes as arguments a process type instantiation of the analysed process,

P , a list of processes running in parallel with the analysed process, ρ0, a number representing

the abstraction constraint, n, and a list of names representing the initial knowledge of the

intruder, κinit. The outcome reflects a set of names, ϕA(φA, x), that can substitute an

input parameter, x. The mapping also contains a variable, intruder, in its domain, which

signifies the intruder’s knowledge, κ.

For example, consider the following system,

system
def
= !x(y) | !(ν data)x〈datat〉

Applying Picasso.picasso system [ ] 1 ["x"], we obtain the following result:

- : (Process.name * Process.name list) list =

[("intruder", ["DATA1"; "x"]); ("y1", ["DATA1"; "x"])]
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Where the intruder process manages to capture Data1, by communicating over x with the

replicated output process, !(ν data)x〈datat〉. On the other hand, variable y1 captures both

Data1, due to the communication with the replicated output, !(ν data)x〈datat〉, and x, due

to the communication with the intruder, who can output any of the names in its knowledge

over any other name in that knowledge.

Module Security Levels. The module provides a data type for security policies that are

used in classifying processes. This type is shown in Figure 6.2.

proc level = L0 of int

| L1 of int * proc level

| L2 of int * proc level * proc level

Figure 6.2: The proc level data type in Picasso.

Security levels are modelled as binary trees. Leaves are the security levels of processes that

have no subprocesses (e.g. null), nodes with single child being the levels of processes with

a single subprocess (e.g. guards, restrictions and replications) and finally, nodes with two

children being the levels of processes with two subprocesses (e.g. parallel compositions and

summations).

For example, in the following system, we assume that P has security level 2 and Q,Q′

have security level 1 (0 is assumed to have no level, which is denoted as −1):

P
def
= Q | Q′

Q
def
= x(y).y〈z〉.0

Q′
def
= x〈r〉.0

Then, the corresponding security policy will be written as:

Security Levels.L2(2,

Security Levels.L1(1,Security Levels.L0(-1)),

Security Levels.L1(1,Security Levels.L0(-1))

Module Pi. This module represents an implementation of the process leakage analysis

that is based on the results obtained from applying the Picasso.picasso function. The

module consists of the following function:
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val proc leakage : Process.process -> Process.process list ->

int -> Security Levels.proc level -> int -> Process.name list ->

Process.name list

The proc leakage function takes the same arguments as the Picasso.picasso function in

addition to a security policy and an integer representing the security level of the intruder.

The function then returns a list of names that have been leaked to lower level processes.

As an example, applying proc leakage to system (6.1), mentioned earlier, with ρ0 =

x(e).0, k = 1, κ = {x} and the security level of the network is 0, is shown as follows:

Pi.proc leakage

Process.COM(

Process.INPUT("x","y",Process.INPUT("y","z",Process.NULL)),

Process.REST("Data",Process.REST("Info",Process.OUTPUT("x","Data",

Process.OUTPUT("Data","Info",Process.NULL))))))

[Process.INPUT("x","e",Process.NULL)] 1

Security Levels.L2(1,

Security Levels.L1(1,Security Levels.L1(1,Security Levels.L0(-1))),

Security Levels.L1(1,Security Levels.L1(1,Security Levels.L1(1,

Security Levels.L1(1,Security Levels.L0(-1))))))

0 ["x"];;

With the security policy made simple by specifying the same security level, 1, for all the

subprocesses of the system (except for the intruder process, which is running at level 0).

The following result is obtained:

- : Process.name list = ["Data"; "Info"; "x";]

Which shows that the above names have been leaked to the intruder.
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6.3 Spicasso: A Spi-Calculus Analyser for Secrecy and

Security Objectives

The Spicasso program is a direct extension of Picasso to cover processes specified in the spi

calculus. The program represents an implementation of the abstract semantics of the spi

calculus given in Section 4.3.2. The main input to the program is the specification of the

process under analysis, along with context and uniformity information. The main modules

of the program are stated in the following paragraphs.

Module Term. This module defines the structure of terms in the spi calculus. The main

data type in this module is term, and its definition is shown in Figure 6.3, where we have,

for simplicity, considered 2-element tuples (pairs) only.

term = NAME of string

| VAR of string

| PUB KEY of term

| PRV KEY of term

| PAIR of term * term

| SECCIPHER of term * term

| PUBCIPHER of term * term

| SIGNATURE of term * term

Figure 6.3: The term data type in Spicasso.

SECCIPHER is the secret-key ciphertext constructor, PUBCIPHER is the public-key ciphertext

constructor and SIGCIPHER is the digital signature constructor. The first element of each

constructor represents the plaintext and the second represents the encryption/signature key.

Names are represented by NAME, variables by VAR, private keys by PRV KEY and public keys

by PUB KEY. Secret session keys are instantiated as names, constructed by NAME.

For example, the complex term [{(x, (n, {m}k′))}]k− is represented as follows:

Term.SIGNATURE(Term.PAIR(Term.VAR("x"),

Term.PAIR(Term.NAME("n"),Term.SECCIPHER(Term.NAME("m"), Term.NAME("k’")))),

Term.PRV KEY(Term.NAME("k")))
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Module Process. The module denotes what a process is in the spi calculus. This is

defined in Figure 6.4. The module also provides operations for substitutions of terms and

the renaming of bound names, variables and tags.

and process = NULL

| INPUT of term * term * process

| OUTPUT of term * term * process

| COND of term * term * process * process

| REST of term * process

| COM of process * process

| REP of process

| SPLIT of term * term * term * process * process

| SECDECRYPT of term * term * term * process * process

| PUBDECRYPT of term * term * term * process * process

| SIGVERIFY of term * term * term * process * process

Figure 6.4: The process data type in Spicasso.

Although the use of type term is generic in the definition of the process type, we still

assume the appropriate usage of names as channels and secret session keys. Other keys

must also have the appropriate type. In the case of SPLIT, the first term is the pair to

be split. The subsequent terms are the variables instantiated by the two elements of the

pair. These variables are bound to the first process. Similarly, for the case of the secret-key

decryption construct, SECDECRYPT, the first term represents the ciphertext to be decrypted,

using the second term (a name). The result, if successful, is bound to the third term in the

first process. The same applies to public-key decryption, PUBDECRYPT, and digital signature

verification, SIGVERIFY.

The process module also includes the environments, tag to term and term to tag, map-

ping tags to terms and vice versa. For example, the term [{(xṫ3, (nṫ2, {mṫ1}ẗ4k′)ẗ3)ẗ2}]ẗ1k− yields

the tags (note that ẗ becomes tt and ṫ becomes t):

Term.NAME(tt1), Term.NAME(tt2), Term.NAME(tt3), Term.NAME(tt4),

Term.NAME(t1), Term.NAME(t2) and Term.NAME(t3)

each of which has a value in the tag to term environment corresponding to a different

substructure of the above term. For example, applying tag to term(Term.NAME(tt1))

yields:
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Term.SIGNATURE(Term.PAIR(Term.VAR("x"),

Term.PAIR(Term.NAME("n"),Term.SECCIPHER(Term.NAME("m"), Term.NAME("k’")))),

Term.PRV KEY(Term.NAME("k")))

Whereas applying term to tag(Term.VAR("x")) results in Term.NAME("t3"). For example,

the following system:

(ν k) (a〈{(M ṫ1, N ṫ2)ẗ2}ẗ1k 〉 | a(x).case x of {yṫ4}k in let (u,w) = y in a〈uṫ3〉)

is represented by the following type instantiation:

Process.REST(Term.NAME("k"),Process.COM(Process.OUTPUT(Term.NAME("a"),

Term.NAME(tt1),Process.NULL),Process.INPUT(Term.NAME("a"),Term.VAR("x"),

Process.SECDECRYPT(Term.VAR("x"),Term.NAME("k"),Term.NAME("t4"),

Process.SPLIT(Term.VAR("y"),Term.VAR("u"),Term.VAR("w"),

Process.OUTPUT(Term.NAME("a"),Term.NAME("t3"),Process.NULL),Process.NULL),

Process.NULL))))

Using the tag to term function, it is possible to retrieve the value of each of the tags,

tt1, t3 and t4 included in the above type instantiation. Similarly, using the term to tag

function, it is possible to convert any term to its tag.

Module Phi. This module is the same as in the Picasso tool, holding mappings from

variables to sets of tags. The main type here is phi = (term * term list) list, where

the generic term will only be used for the particular case of NAME. For example, consider the

following φA environment revisited from the previous section:

φA =


x 7→ {t1}

y 7→ {t1, t2}

z 7→ {t1, t2, t3}


Which instantiates the following type:

- : (Process.term * Process.term list) list =

[(Process.NAME "x", [Process.NAME "t1"]);

(Process.NAME "y", [Process.NAME "t1"; Process.NAME "t2"]);

(Process.NAME "z", [Process.NAME "t1"; Process.NAME "t2";

Process.NAME "t3"])]
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Module Rho. This module is the same as in the Picasso tool described in the previous

section. The main type is:

rho = Process.process list

Which holds a list of processes that are running in parallel with the current analysed process.

Module Spicasso. This is the main abstract interpretation module in Spicasso. The

module contains the following function:

val spicasso : Process.process -> Process.process list -> int ->

Process.name list -> (Process.term * Process.term) list ->

(Process.term * Process.term list) list

which represents the abstract semantic relation Aspi([P ]) ρ φA. The function takes as inputs

the specification of the process to be analysed P , a list of initial processes running in parallel

ρ, a number representing the abstraction constraint n, a list of names representing the initial

knowledge of the intruder and finally, a list of pairs representing the mappings from terms

to their tags. The outcome is the list representing ϕA(φA, x) for each variable, x, in the

domain of φA. The variable, intruder, is preserved for the final knowledge of the intruder

process, κ, which is modelled by the capabilities of the Dolev-Yao attacker.

Taking the system:

(ν k) (a〈{(M ṫ1, N ṫ2)ẗ2}ẗ1k 〉 | a(x).case x of {yṫ4}k in let (u,w) = y in a〈uṫ3〉)

as an example, and applying the above Spicasso.spicasso function:

(Spicasso.spicasso

Process.REST(Term.NAME("k"),

Process.COM(

Process.OUTPUT(Term.NAME("a"),

Term.SECCIPHER(Term.PAIR(Term.NAME("M"),Term.NAME("N")),Term.NAME("k")),

Process.NULL),

Process.INPUT(Term.NAME("a"),Term.VAR("x"),

Process.SECDECRYPT(Term.VAR("x"),Term.NAME("k"),Term.VAR("y"),

Process.SPLIT(Term.VAR("y"),Term.VAR("u"),Term.VAR("w"),

Process.OUTPUT(Term.NAME("a"),Term.VAR("u"),Process.NULL),

Process.NULL),Process.NULL)))))
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[]

1

["a";"net"]

[(Term.NAME("M"), Term.NAME("t1"));

(Term.NAME("N"), Term.NAME("t2"));

(Term.PAIR(Term.NAME("M"), Term.NAME("N")), Term.NAME("tt2"));

(Term.NAME("N"), Term.NAME("t2"));

(Term.SECCIPHER(Term.PAIR(Term.NAME("M"),Term.NAME("N")),Term.NAME("k")),

Term.NAME("tt2"));

(Term.VAR("y"), Term.NAME("t4"));

(Term.VAR("u"), Term.NAME("t3"))]

will result in the following outcome, which represents the name subset only:

- : (Process.term * Process.term list) list =

[(Process.NAME "u", [Process.NAME "M"]);

(Process.NAME "w", [Process.NAME "N"])];

(Process.NAME "x", [Process.NAME "a"; Process.NAME "net"])];

(Process.NAME "intruder", [Process.NAME "a"; Process.NAME "net";

Process.NAME "M"])];

Clearly u and w will obtain the values of the pair (M,N). However, note that x obtains as

values the names a and net from the intruder by communicating over name a, which is a

channel shared with the intruder. The intruder itself manages to obtain the first element M

of the pair (M,N) using channel a.

6.4 Conclusion

In this chapter we have presented two initial prototype implementations for the abstract

interpretations for the π-calculus and the spi calculus languages. The implementation of both

prototypes captures the term substitution property, and in the current version of the Picasso

prototype, a special function for the detection of process secrecy leaks is implemented. Both

prototypes were written in the Objective Caml language (OCaml), a functional language.

Future developments of the tools include the addition of other functions for the detection

of security breaches, like the process authenticity breach, the building of a language parser,

the improvement of tool performance and the building of a graphical user interface.
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Chapter 7

Conclusion and Future Work

The modern advances in the design and implementation of distributed computing systems

and the advent of mobile technologies has increased the demands for information security and

the protection of computing resources beyond any stage in the past. The task of preventing

unauthorized malicious intruders and erroneous programs from compromising the secrecy,

authenticity and other desirable security properties is growing into a complex and delicate

task as a result of the dynamic nature of network topologies, which modern distributed

systems are characterised by. This dynamic nature facilitated a plethora of novel methods

by which attacks from such intruders could be mounted. Therefore, it is of great concern to

ensure that more secure and robust systems are designed that coincide with the important

role information technology plays in modern life activities and business transactions.

One significant approach to the analysis of program security is static analysis, which is

used to determine properties about programs and their runtime behaviour prior to their ex-

ecution. This is necessary to determine whether programs exhibit certain security flaws, like

information leakage and lack of authenticity. It is also necessary when designing newer sys-

tems and languages that avoid such pitfalls. Therefore, static analysers constitute standard

tools often used as part of language compilers. Their applications reach beyond the areas

of code safety and security into other areas like program optimisation and transformation.

Due to the importance of program static analysis, it was chosen as the main subject of

this thesis, where a denotational abstract interpretation-based framework was introduced for

the analysis of mobile systems and cryptographic protocols specified within the models of the

π-calculus and its cryptographic extension, the spi calculus. In this concluding chapter, we

review the major contributions of this framework and discuss prospects for future extensions

and modifications that can benefit the framework.
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First, we summarise the work presented in the main chapters of this thesis.

Chapter 3: Nominal Calculi

A domain-theoretic model for processes in the π-calculus was given in this chapter based

on Stark’s predomain equations [121], where the semantic domain of processes and a de-

notational function from the language syntax to elements of the domain were fully speci-

fied. The resulting denotational semantics is precise, compositional, and includes a labelling

mechanism for renaming new instances of bound names introduced as a result of repli-

cated processes. Such a mechanism facilitates tracing copies of names to their origin in

the specification. Furthermore, the denotational model was extended to be able to model

cryptographic capabilities of processes in the spi calculus. This extension allowed complex

data structures, like ciphertexts, digital signatures and tuples to be captured in the result-

ing semantics. The soundness and adequacy of both models were shown with respect to

transitions in the structural operational semantics.

Chapter 4: Abstract Interpretation

In this chapter, abstract interpretations for the π-calculus and the spi calculus were built

based on extensions of the denotational semantics presented in Chapter 3. The abstract

semantic domain was constructed in order to capture the security-sensitive property of term

substitutions. Such substitutions occur as a result of communications in the π-calculus, and

communications and cryptographic operations in the spi calculus. The meaning of a process

was then given as a mapping from its set of variables (input parameters, local variables), to

sets of tags, representing the captured terms. The number of tags and variables constituting

this meaning was kept finite by placing an integer limit in order to ensure the termination of

the analysis. The resulting interpretation is non-uniform in that it can distinguish between

multiple copies (up to the integer limit) of the bound variables, names and tags created

as a result of replicated behaviour. The interpretation was then applied to a number of

examples including the File Transfer Protocol and the Needham-Schroeder, SPLICE/AS,

Otway-Rees, Kerberos, Yahalom and Woo-Lam authentication protocols.

Chapter 5: Security Analysis

The results of the abstract interpretation were used to build security analyses for the de-

tection of breaches in the secrecy and authenticity properties of mobile systems and crypto-

graphic protocols. Breaches in data secrecy were formalised by the process leakage property,
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whereas breaches in data authenticity were formalised by the process authenticity breach

property. In the former, the secrecy of data is compromised whenever a low-secrecy process

obtains a name that was created by a high-secrecy process. On the other hand, authenticity

is compromised when a low-trust process manages to send a name to a high-trust process.

The definitions of these properties were used in explaining the results of the abstract inter-

pretations of the examples given in Chapter 4.

Chapter 6: Automatic Tools

The framework, defined in Chapters 4 and 5, was implemented using the functional language

of Objective Caml for the cases of the π-calculus and the spi calculus and two prototypes

are available, PiCASSO and SpiCASSO. The resulting implementations are closely related

to the denotational definition of the abstract interpretation adopted in the framework.

7.1 Research Contributions

The work presented in this thesis contributes directly to the following areas.

7.1.1 Denotational Semantics

The work presented in this thesis has resulted in the definition of a sound and adequate de-

notational semantics for the languages of the π-calculus and the spi calculus. The π-calculus

semantics was based on the predomain equations presented by Stark in [121], whereas the spi

calculus semantics was built on an extension of these equations that included a predomain

of complex terms, and it permitted the presence of complex terms as messages of output

actions. These modifications allowed for the modelling of the cryptographic capabilities of

processes in the spi calculus. To the best of our knowledge, it is the first domain-theoretic

model for the spi calculus.

7.1.2 The Static Analysis of Nominal Calculi

We have presented an abstract interpretation-based static analysis for reasoning about the

term-substitution property in mobile and cryptographic systems that are potentially infi-

nite. The analysis is non-uniform in that it can distinguish between the different instances

of bound names (local data) and variables belonging to the different copies of replicated pro-

cesses. It also caters for the presence of intruder processes (e.g. the network) that exhibit

potentially harmful behaviour, by allowing the specification of the most general attacker to

130



be included in the analysis of any system. Finally, the major novelty about the framework

presented in this thesis is that it adopts a denotational rather than an operational approach

for the analysis of mobile and cryptographic programs. This approach has the following

advantages:

- The resulting theory is often simple and close to its implementation in functional

programming. The use of the operational approach in constructing static analyses for

mobile systems has often resulted in complex analyses that are difficult to implement

(e.g. [126]).

- Certain mathematical concepts that are computationally significant, like domains and

least fixed points, are directly available for the theory and implementation of the static

analysis.

- Finally, a denotational model allows for program properties (in our case, the term

substitution property) to be defined compositionally. In other words, the property

of a program can be defined from the properties of its subprograms. Such features

provide an interesting research foundation for exploration in the future.

7.1.3 Program Security

The state environment, φA, resulting from the abstract interpretation defined within our

framework offers a common ground for the definition of security properties based on the

fundamental property of term substitution. Thus far, we have provided definitions for the

process leakage and authenticity properties. We plan to extend the framework to define other

security properties, like communication security, freshness, anonymity and non-interference-

based security. Such unifying frameworks exist in the literature, the most notable one being

the framework introduced by the team led by Focardi and Gorrieri [57] based on the non-

interference property.

The secrecy and authenticity definitions have been used in analysing a number of proto-

cols. These include a simple version of a File Transfer Protocol and the Needham-Schroeder,

SPLICE/AS, Otway-Rees, Kerberos, Yahalom and Woo-Lam authentication protocols. Re-

sults confirmed the presence of a number of well-known impersonation attacks on the

Needham-Schroeder, SPLICE/AS, Otway-Rees (two attacks) and Woo-Lam authentication

protocols.
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7.2 Future Work

There are several directions towards which the framework presented in this thesis can be

extended. We summarise a few ideas in the following sections.

7.2.1 Communication Secrecy

Another security property that can be formalised using an extension of the current framework

is the communication secrecy property. Communication secrecy refers to the secrecy of

communicated data with reference to the secrecy levels of the channels over which the data

are communicated. Informally, a communication secrecy breach occurs whenever a high-level

name is sent over a low-level channel. The conceptual difference between a communication

secrecy breach and a process leakage, as defined in Sections 5.2.1 and 5.2.2, is that the

former is a name-channel relationship, whereas the latter is a name-process relationship.

For example, consider the system, d(ν y)x〈yt〉.P el | dx(z).Qel, specified in the π-

calculus, where x is a free name and the level of the network is ⊥L < l. Then, we obtain,

ζ(y) = ζ(z) = l, and, ζ(x) = ⊥L, according to the definition of the Z(P ) function in Section

5.2.1. Analysing the system reveals that t ∈ φA(z), but according to the above classification

of secrecy levels, this does not constitute any process leakage. However, it is clear that y

is sent over a channel, x, with low secrecy guarantees (since x is a public channel and its

secrecy level is that of the intruder, i.e. ⊥L).

To be able to capture breaches in the communication secrecy, the channel over which a

term travels must be associated in the abstract interpretation with that name. For example,

it is possible to include in the meaning of a process, an environment, ξA : Tag → ℘(N ),

mapping every message, as represented by its tag, to a set of possible channels over which

the message is sent. Such association could be used then to compare the level of the message

to the levels of its possible channels. The presence of a channel with a lower security level

indicates an insecure communication.

7.2.2 Message Independence

As we discussed in Section 1.5 of the introductory chapter, other notions of security, like

non-interference-based and equivalence-based security, attempt to capture breaches that

occur through means subtler than the explicit message passing or message processing, like

changing the input/output behaviour of processes. We believe that it is possible to extend

the static analysis framework presented here to cover one such security property, known as

message independence.
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The definition of message independence in the spi calculus is closely related to the notion

of testing equivalence, ', as suggested by Abadi and Gordon in [5]. According to this

equivalence, two processes are identified by the surrounding context if and only if they

exhibit the same sequence of barbs in the presence of a testing process composed in parallel

with each of the two processes. Based on this, a process is message independent with respect

to a particular variable if and only if instantiations of that variable by different names form

a class of equivalent processes.

The idea of barbs is fundamental in the study of implicit information flow in nominal

calculi and finds its roots in synchronisation-based calculi, in particular in the work of

Milner in CCS [94]. The importance of this idea arises from the fact that barbs stand for

observable channels that are ready for communications, and therefore, may be utilized to

implicitly send information from the analysed system to its context. This flow of information

utilises messages, names of channels and the sequence in which channels interact with their

context.

In the theory of the static analysis framework presented in this thesis, it is possible

to detect a weak form of the message independence property. Intuitively, assuming that,

Aspi([P | I]) ρ φA = φAP and Aspi([Q | I]) ρ φA = φAQ, are the results of analysing processes

P and Q in parallel with the intruder, I, then P is abstract testing equivalent to Q, written

as P 'A Q, if and only if φAP (κ) = φAQ(κ). In other words, the intruder is incapable of

distinguishing (using its knowledge, κ), between running in parallel with P and running in

parallel with Q.

It is possible to demonstrate that the notion of testing equivalence [5] implies abstract

testing equivalence, i.e. ' ⇒ 'A. This result is mainly due to the fact that the abstract

interpretation used in this framework does not maintain any temporal features of the set of

names substituting a variable. Such temporal features could be used to transmit information.

Hence, note for example, that the two processes c〈a〉.c〈b〉 and c〈b〉.c〈a〉 are distinguished by

', but are identified by 'A.

Now, assume that an open process, P (x), is a process that can be instantiated by sub-

stituting a variable, x, for any name, m, which yields the instance P [m/x]. P (x), is then

said to be abstract message-independent with respect to the intruder, I, if and only if

∀m,n ∈ N : P [m/x] 'A P [n/x]. This implies that choosing any two names in N to ob-

tain instances of P (x) should always result in the same abstract knowledge of the intruder

composed with each of those instances. Hence, the intruder cannot find any difference when

abstractly interpreted in parallel with P [m/x] from P [n/x].
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7.2.3 Language Extensions

Finally, we mention the important research direction in which we could consider other for-

malisms for mobility, or extensions of current formalisms, that incorporate concepts related

to the security of mobile systems. We give an overview below of two such extensions.

PKI-based Extension

Currently, work is under way1 in utilising the framework to build an abstract interpretation

that captures the term substitution property in an extended version of the spi calculus with

primitives for modelling systems with a Public-Key Infrastructure (PKI) state. The spi-

pki language allows for certain PKI requirements in security protocols to be expressed, for

example, the validity of the binding between a public key and its owner, which is maintained

through valid digital certificates that link the key to its owner and are signed by a Trusted

Third Party (TTP). Such requirements cannot be expressed in the spi calculus.

The extension allows for the authenticity of a particular PKI user to be defined as the

capturing of a digital signature that has signed fresh data with a private key, of which the

public part could be verified to be validly bound (in the current PKI state) to that user.

Capturing digital signatures relies on the term substitution property of our framework.

Location-based Extension

Another possibility of using language extensions would be to include location-based lan-

guages, like the mobile ambients calculus and the seal calculus. The main issue involved

is the construction of an appropriate denotational semantics that models the concept of

locations in a correct manner. Term substitutions could then be selected as the abstract

semantic domain and used in formalising security properties of the analysed systems. For

example, in the mobile ambients calculus, one such property could be the capturing of the

evolution of system topology during which certain ambients may be present within parent

ambients. This property depends on the manner in which communications take place: by

the movement of ambients into and out of other ambients. Hence, it could be possible to

have a non-standard meaning of a process denoting an environment that maps each ambient

name to a set of ambient names that may exist at runtime within the location of that am-

bient during runtime. The breach of secrecy then, could be expressed by having an ambient

with a lower security level entering inside the boundaries of a higher-level parent ambient

or vice versa.

1Project IMPROVE - Enterprise Ireland, with David Gray, Geoff Hamilton and David Sinclair.
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So, far, there have been a few attempts to extend location-based languages with crypto-

graphic primitives, which add another dimension to the problem of the denotational mod-

elling and abstract interpretation of these languages. The mobile ambients calculus has

been extended with primitives for shared-key cryptography in [34]. The seal calculus has

also been extended in [22], however, with a more generic model that deals with public-key

as well as shared-key cryptography. Moreover, a primitive is suggested for expressing code

mobility as passive data. The language allows for the modelling of many features in tech-

nologies, like Java and .NET, including for example the modelling of secure downloading

and running of Java applets within locations called sandboxes. The results show that it is

possible to model an example, like the certified email protocol suggested by [4], which relies

heavily on the concepts of cryptography and code mobility. Future research plans include

extending the current static analysis framework to the crypto-loc language.
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Appendix A

Proofs

A.1 Safety of the ∪φ operation in the π-calculus

(Lemma 1)

∀i ∈ {1 . . . n}, n ∈ N, φi ∈ D⊥, φ′i ∈ D
]
⊥ :

(φ =
⋃
φ

i=1...n

φi) ∧ (φ′ =
⋃
φ

i=1...n

φ′i) ∧

(∃y ∈ N : ϕE(φi, y) ∈ φi(x) ⇒ ∃t ∈ φ′i(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ, y) ∈ φ(x) ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})

The proof proceeds by mathematical induction on sets of environments.

The base case: n=0

(φ =
⋃
φ

i=1...0

φi = φ0) ∧ (φ′ =
⋃
φ

i=1...0

φ′i = φ0)

⇒ (∃y ∈ N : ϕE(φ0, y) ∈ φ0(x) ⇒ ∃t ∈ φ′0(αk(x)) : value of ({t}) = {αk(y)})

Since, ∀x ∈ N : φ0(x) = φ′0(αk(x)) = ∅.

The induction step. First, assume the hypothesis is true for a union of n environments:

(φ =
⋃
φ

i=1...n

φi) ∧ (φ′ =
⋃
φ

i=1...n

φ′i) ∧

(∃y ∈ N : ϕE(φi, y) ∈ φi(x) ⇒ ∃t ∈ φ′i(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ, y) ∈ φ(x) ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})
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Proving the induction step demands that the above statement is true for a union of n + 1

environments. Assuming that, φ =
⋃
φ

i=1...n

φi and φ′ =
⋃
φ

i=1...n

φ′i, as above, we have that:⋃
φ

i=1...n+1

φi = φ ∪φ φn+1⋃
φ

i=1...n+1

φ′i = φ′ ∪φ φ′n+1

From the definition of ∪φ in Section 4.2.1, we have:

(φ ∪φ φn+1)(x) = φ(x) ∪ φn+1(x)

(φ′ ∪φ φ′n+1)(x) = φ′(x) ∪ φ′n+1(x)

We obtain ∀y ∈ φ(x), y′ ∈ φn+1(x) ⇒ y, y′ ∈ (φ(x) ∪ φn+1(x))

and, ∀t ∈ φ′(αk(x)), t′ ∈ φ′n+1(αk(x)) ⇒ t, t′ ∈ (φ′(αk(x)) ∪ φ′n+1(αk(x)))

By the inductive hypothesis, we have that:

(∃y ∈ N : ϕE(φ, y) ∈ φ(x) ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})

and with the assumption that the new added environments are also safe:

(∃y′ ∈ N : ϕE(φn+1, y
′) ∈ φn+1(x) ⇒ ∃t′ ∈ φ′n+1(αk(x)) : value of ({t′}) = {αk(y′)})

Then by the properties of set union, it is possible to arrive at the following result:

y ∈ (φ(x) ∪ φn+1(x))

⇒ ∃t ∈ (φ′(αk(x)) ∪ φ′n+1(αk(x))) : value of ({t}) = {αk(y)}

�
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A.2 Safety of the abstract semantics of the π-calculus

(Theorem 5)

∀P, ρ, φE , φA :

(Eπ([P ]) ρ φE = (p, φ′E)) ∧ (Aπ([P ]) ρ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

The proof proceeds by structural induction on P (in all that follows, snd(x1, x2) = x2).

The base case: 0

Aπ([0]) ρ φA = φA by (Aπ1)

Eπ([0]) ρ φE = (∅, φE) by (Eπ1)

Here we have from the antecedent:

Aπ([P ]) ρ0 φA = φ′A

Eπ([P ]) ρ0 φE = (p, φ′E)

Since φ′E = φE and φ′A = φA, this satisfies the safety requirement as follows:

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

The induction step.

Case 1: x(y).P

Aπ([x(y).P ]) ρ φA = φA by (Aπ2)

Eπ([x(y).P ]) ρ φE = (p, φE) by (Eπ2)

From the antecedent, we have that:

Aπ([P ]) ρ0 φA = φ′A

Eπ([P ]) ρ0 φE = (p, φ′E)

Since φ′E = φE and φ′A = φA, this satisfies the safety requirement as follows:

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})
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⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

Case 2: x〈y〉.P

Aπ([x〈yt〉.P ]) ρ φA =
⋃
φ

x′(z).P ′∈ρ
φ′A ∪φ φA by (Aπ3)

where, φ′A = Rπ([{|P |}ρ ]ρ ρ[P ′/x′(z).P ′]]) φA[αk(z) 7→ φA(αk(z)) ∪ {αk(t)}]

=
⋃
φ

P∈ρ′
Aπ([P ]) ({|P |}ρ ]ρ ρ[P ′/x′(z).P ′]\{|P |}ρ) φA[αk(z) 7→ φA(αk(z)) ∪ {αk(t)}]

if, ϕA(φA, x) ∩ ϕA(φA, x
′) 6= {}

Eπ([x〈y〉.P ]) ρ φE = (p,
⋃
φ

x′(z).P ′∈ρ
φ′E ∪φ φE) by (Eπ3)

where, φ′E = snd(Rπ([{|P |}ρ ]ρ ρ[P ′/x′(z).P ′]]) φE [z 7→ {ϕE(φE , y)}])

= snd(p′,
⋃
φ

P∈ρ′
snd(Eπ([P ]) ({|P |}ρ ]ρ ρ[P ′/x′(z).P ′]\{|P |}ρ) φE [z 7→ {ϕE(φE , y)}]))

if, ϕE(φE , x) = ϕE(φE , x
′)

From the antecedent, we have that:

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

Setting φ′E = φE [z 7→ {ϕE(φE , y)}] and φ′A = φA[αk(z) 7→ φA(αk(z)) ∪ {αk(t)}], we have

that ∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(z) ⇒ ∃t ∈ φ′A(αk(z)) : value of ({t}) = {αk(y)} (by the

properties of set union)

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

By the induction hypothesis for P : (Eπ([P ]) ρ′′ φ′E = p′′, φ′′E) ∧ (Aπ([P ]) ρ′′ φ′A = φ′′A) ∧

(∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′′
E , y) ∈ φ′′E(x) ⇒ ∃t ∈ φ′′A(αk(x)) : value of ({t}) = {αk(y)})

By the safety of the ∪φ relation (Lemma 1), we arrive at the following result:

p, ((
⋃
φ

x(z).Q∈ρ

⋃
φ

P∈ρ′
snd(Eπ([P ]) ({|P |}ρ ]ρ ρ[P ′/x′(z).P ′]\{|P |}ρ) φ′E)) ∪φ φE) = p, φ ∧

(
⋃
φ

x(z).Q∈ρ

⋃
φ

P∈ρ′
Aπ([P ]) ({|P |}ρ ]ρ ρ[P ′/x′(z).P ′]\{|P |}ρ) φ′A) ∪φ φA = φ′ ∧

(∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ, y) ∈ φ(x) ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})

Which satisfies the induction step and the safety requirement.
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Case 3: if x = y then P else Q

Aπ([if x = y then P else Q]) ρ φA =


Rπ([{|P |}ρ ]ρ ρ]) φA,

if ϕA(φA, x) ∩ ϕA(φA, y) 6= {}

Rπ([{|Q|}ρ ]ρ ρ]) φA, otherwise

where, Rπ([{|P |}ρ ]ρ ρ]) φA =
⋃
φ

P∈ρ′P

Aπ([P ]) ρ′′P φA

and, Rπ([{|Q|}ρ ]ρ ρ]) φA =
⋃
φ

Q∈ρ′Q

Aπ([Q]) ρ′′Q φA (by Aπ4)

Eπ([if x = y then P else Q]) ρ φE =

 Rπ([{|P |}ρ ]ρ ρ]) φE , if ϕE(φE , x) = ϕE(φE , y)

Rπ([{|Q|}ρ ]ρ ρ]) φE , otherwise

where, Rπ([{|P |}ρ ]ρ ρ]) φE = p,
⋃
φ

P∈ρ′P

snd(Eπ([P ]) ρ′′P φE)

and, Rπ([{|Q|}ρ ]ρ ρ]) φE = q,
⋃
φ

Q∈ρ′Q

snd(Eπ([Q]) ρ′′Q φE) (by Eπ4)

Where, ρ′P = {|P |}ρ ]ρ ρ, ρ′Q = {|Q|}ρ ]ρ ρ, ρ′′P = ρ′P \{|P |}ρ and ρ′′Q = ρ′Q\{|Q|}ρ.

By the induction hypothesis for P (Q):

(Eπ([P ]) ρ′′ φE = p′, φ′E) ∧ (Aπ([P ]) ρ′′ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

By the safety of the ∪φ relation (Lemma 1), we arrive at the following result:

p, (
⋃
φ

P∈ρ′
snd(Eπ([P ]) ρ′′ φE)) = p, φ ∧ (

⋃
φ

P∈ρ′
Aπ([P ]) ρ′′ φA) = φ′ ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ, y) ∈ φ(x) ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})

Which satisfies the induction step and the safety requirement.

Case 4: P +Q

Aπ([P +Q]) ρ φA = Rπ([{|P |}ρ ]ρ ρ]) φA ∪φ Rπ([{|Q|}ρ ]ρ ρ]) φA =

(
⋃
φ

P∈ρ′P

Aπ([P ]) ρ′′P φA) ∪φ (
⋃
φ

Q∈ρ′Q

Aπ([Q]) ρ′′Q φA) (by Aπ5)

Eπ([P +Q]) ρ φE = p, (snd(Rπ([{|P |}ρ ]ρ ρ]) φE) ∪φ snd(Rπ([{|Q|}ρ ]ρ ρ]) φE )) =
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p, ((
⋃
φ

P∈ρ′P

snd(Eπ([P ]) ρ′′P φE)) ∪φ (
⋃
φ

Q∈ρ′Q

snd(Eπ([Q]) ρ′′Q φE))) (by Eπ5)

Where, ρ′P = {|P |}ρ ]ρ ρ, ρ′Q = {|Q|}ρ ]ρ ρ, ρ′′P = ρ′P \{|P |}ρ and ρ′′Q = ρ′Q\{|Q|}ρ.

By the induction hypothesis for P :

(Eπ([P ]) ρ′′ φE = p′, φ′E) ∧ (Aπ([P ]) ρ′′ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

By the safety of the ∪φ relation (Lemma 1), we arrive at the following result:

p, (
⋃
φ

P∈ρ′
snd(Eπ([P ]) ρ′′ φE)) = p, φ ∧ (

⋃
φ

P∈ρ′
Aπ([P ]) ρ′′ φA) = φ′ ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ, y) ∈ φ(x) ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})

Which satisfies the induction step and the safety requirement.

Case 5: P | Q

Aπ([P | Q]) ρ φA = Rπ([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φA =
⋃
φ

P∈ρ′
Aπ([P ]) ρ′′ φA (by Aπ6)

Eπ([P | Q]) ρ φE = Rπ([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φE = p, (
⋃
φ

P∈ρ′
snd(Eπ([P ]) ρ′′ φE)) (by Eπ6)

Where, ρ′ = {|P |}ρ ]ρ {|Q|}ρ ]ρ ρ and ρ′′ = ρ′\{|P |}ρ.

By the induction hypothesis for P :

(Eπ([P ]) ρ′′ φE = p′, φ′E) ∧ (Aπ([P ]) ρ′′ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

By the safety of the ∪φ relation (Lemma 1), we arrive at the following result:

p, (
⋃
φ

P∈ρ′
Eπ([P ]) ρ′′ φE) = p, φ ∧ (

⋃
φ

P∈ρ′
Aπ([P ]) ρ′′ φA) = φ′ ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})
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⇒ (∃y ∈ N : ϕE(φ, y) ∈ φ ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})

Which satisfies the induction step and the safety requirement.

Case 6: (ν x)P

Aπ([(ν x)P ]) ρ φA = Rπ([{|P |}ρ ]ρ ρ]) φA =
⋃
φ

P∈ρ′
Aπ([P ]) ρ′′ φA (by Aπ7)

Eπ([(ν x)P ]) ρ φE = p, snd(Rπ([{|P |}ρ ]ρ ρ]) φE) = p′,
⋃
φ

P∈ρ′
snd(Eπ([P ]) ρ′′ φE) (by Eπ7)

Where, ρ′ = {|P |}ρ ]ρ ρ and ρ′′ = ρ′\{|P |}ρ

By the induction hypothesis for P :

(Eπ([P ]) ρ′′ φE = p′, φ′E) ∧ (Aπ([P ]) ρ′′ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

By the safety of the ∪φ relation (Lemma 1), we arrive at the following result:

p′, (
⋃
φ

P∈ρ′
snd(Eπ([P ]) ρ′′ φE)) = φ ∧ (

⋃
φ

P∈ρ′
Aπ([P ]) ρ′′ φA) = φ′ ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ, y) ∈ φ(x) ⇒ ∃t ∈ φ′(αk(x)) : value of ({t}) = {αk(y)})

Which satisfies the induction step and the safety requirement.

Case 7: !P

Aπ([!P ]) ρ φA = FπA(−1)

where,

FπA(n) = let φ1 = Aπ([
n∏
i=1

ren(P, i) ]) ρ φA in

let φ2 = Aπ([
n+1∏
i=1

ren(P, i) ]) ρ φA in

if φ1 = φ2 then φ1 else FπA(n+ 1)

and, ∀x ∈ bn(P ), yt ∈ n(P ) : ren(P, i) = (P [xi/x])[yti/yt] (by Aπ8)

Eπ([!P ]) ρ φE = FπE (−1)

where,
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FπE (n) = let v1 = Eπ([
n∏
i=1

P [bni(P )/bn(P )] ]) ρ φE in

let v2 = Eπ([
n+1∏
i=1

P [bni(P )/bn(P )] ]) ρ φE in

if v1 = v2 then v1 else FπE (n+ 1)

and, bni(P ) = {xi | x ∈ bn(P )} (by Eπ8)

The proof proceeds by mathematical induction, where we demonstrate that FπA(−1) is safe

with respect to FπE (−1) (base case) and that if FπA(n) is safe with respect to FπE (n) then

FπA(n+ 1) is safe with respect to FπE (n+ 1) (inductive step).

The base case: n = −1

FπA(−1) = let φ1 = ⊥D] in

let φ2 = Aπ([ 0 ]) ρ φA in

if φ1 = φ2 then φ1 else FπA(0)

FπE (−1) = let v1 = (⊥Pi⊥ ,⊥D) in

let v2 = Eπ([ 0 ]) ρ φE in

if v1 = v2 then v1 else FπE (0)

From the above two calculations, we have that ⊥D] = φA0 is a safe abstraction of ⊥D = φE0

since ∀x ∈ dom(φE0) : φE0(x) = φA0(x) = {}. Also, since we have proved the case for P = 0

(The second computation of Fπ) earlier, then we have that:

(Eπ([P ]) ρ φE = p′, φ′E) ∧ (Aπ([P ]) ρ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

The induction step:

We start by assuming the inductive hypothesis:

(FπE (n) = p′, φ′E) ∧ (FπA(n) = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

157



Now, we prove that the same safety relation holds for FπA(n+ 1) with respect to FπE (n+ 1),

as follows:

FπA(n+ 1) = let φ1 = Aπ([
n+1∏
i=1

ren(P, i) ]) ρ φA in

let φ2 = Aπ([
n+2∏
i=1

ren(P, i) ]) ρ φA in

if φ1 = φ2 then φ1 else FπA(n+ 2)

FπE (n+ 1) = let v1 = Eπ([
n+1∏
i=1

P [bni(P )/bn(P )] ]) ρ φE in

let v2 = Eπ([
n+2∏
i=1

P [bni(P )/bn(P )] ]) ρ φE in

if v1 = v2 then v1 else FπE (n+ 2)

From the induction hypothesis, we know that:

(Eπ([
n+1∏
i=1

P [bni(P )/bn(P )] ]) ρ φE = p′, φ′E) ∧ (Aπ([
n+1∏
i=1

ren(P, i) ]) ρ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

The remaining case involves Aπ([
n+2∏
i=1

ren(P, i) ]) ρ φA and Eπ([
n+2∏
i=1

P [bni(P )/bn(P )] ]) ρ φE .

We can rewrite these as:

Aπ([
n+2∏
i=1

ren(P, i) ]) ρ φA = Aπ([
n+1∏
i=1

ren(P, i) | ren(P, n+ 2) ]) ρ φA

Eπ([
n+2∏
i=1

P [bni(P )/bn(P )] ]) ρ φE = Eπ([
n+1∏
i=1

P [bni(P )/bn(P )] | P [bnn+2(P )/bn(P )] ]) ρ φE

From the induction hypothesis, we have that:

(Eπ([
n+1∏
i=1

P [bni(P )/bn(P )] ]) ρ φE = p′, φ′E) ∧ (Aπ([
n+1∏
i=1

ren(P, i) ]) ρ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

And from the antecedent:

(Eπ([ P [bnn+2(P )/bn(P )] ]) ρ φE = p′, φ′E) ∧ (Aπ([ ren(P, n+ 2) ]) ρ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

We have already proven the case for the parallel composition of two processes,

Aπ([ P | Q ]) ρ φA and Eπ([ P | Q ]) ρ φE (case 5). Hence, we can conclude that:
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(FπE (n+ 1) = p′, φ′E) ∧ (FπA(n+ 1) = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

From both the base case and the induction step, we can conclude that:

(Eπ([ !P ]) ρ φE = p′, φ′E) ∧ (Aπ([ !P ]) ρ φA = φ′A) ∧

(∃y ∈ N : ϕE(φE , y) ∈ φE(x) ⇒ ∃t ∈ φA(αk(x)) : value of ({t}) = {αk(y)})

⇒ (∃y ∈ N : ϕE(φ
′
E , y) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk(x)) : value of ({t}) = {αk(y)})

�
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A.3 Safety of the ∪φ operation in the spi calculus

(Lemma 2)

∀i ∈ {1 . . . n}, n ∈ N, φi ∈ D⊥, φ′i ∈ D
]
⊥ :

(φ =
⋃
φ

i=1...n

φi) ∧ (φ′ =
⋃
φ

i=1...n

φ′i) ∧

(∃M ∈ Term : ϕE(φi,M) ∈ φi(x) ⇒ ∃t ∈ φ′i(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

The proof proceeds by mathematical induction on sets of environments.

The base case: n=0

(φ =
⋃
φ

i=1...0

φi = φ0) ∧ (φ′ =
⋃
φ

i=1...0

φ′i = φ0)

⇒ ∃M ∈ Term : ϕE(φ0,M) ∈ φ0(x) ⇒ ∃t ∈ φ′0(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x])

Since, ∀x ∈ N : φ0(x) = φ′0(αk(x)) = ∅.

The induction step. First, assume the hypothesis is true for a union of n environments:

(φ =
⋃
φ

i=1...n

φi) ∧ (φ′ =
⋃
φ

i=1...n

φ′i) ∧

(∃M ∈ Term : ϕE(φi,M) ∈ φi(x) ⇒ ∃t ∈ φ′i(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

Proving the induction step demands that the above statement is true for a union of n + 1

environments. Assuming that, φ =
⋃
φ

i=1...n

φi and φ′ =
⋃
φ

i=1...n

φ′i, as above, we can show that:⋃
φ

i=1...n+1

φi = φ ∪φ φn+1⋃
φ

i=1...n+1

φ′i = φ′ ∪φ φ′n+1

From the definition of ∪φ in Section 4.2.1, we have:
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(φ ∪φ φn+1)(x) = φ(x) ∪ φn+1(x)

(φ′ ∪φ φ′n+1)(x) = φ′(x) ∪ φ′n+1(x)

We obtain ∀y ∈ φ(x), y′ ∈ φn+1(x) ⇒ y, y′ ∈ (φ(x) ∪ φn+1(x))

and, ∀t ∈ φ′(αk(x)), t′ ∈ φ′n+1(αk(x)) ⇒ t, t′ ∈ (φ′(αk(x)) ∪ φ′n+1(αk(x)))

By the inductive hypothesis, we have that:

(∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

and with the assumption that the new added environments are also safe:

(∃M ∈ Term : ϕE(φn+1,M) ∈ φn+1(x) ⇒ ∃t ∈ φ′n+1(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

Then by the properties of set union, it is possible to arrive at the following result:

(∃M ∈ Term : ϕE((φ(x) ∪ φn+1(x)),M) ∈ (φ(x) ∪ φn+1(x))

⇒ ∃t ∈ (φ′(αk,k′(x)) ∪ φ′n+1(αk,k′(x))) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀x ∈ bnv(M) : M [αk,k′(x)/x]))

�
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A.4 Safety of the abstract semantics for the spi calculus

(Theorem 8)

∀P, ρ, φE , φA :

(Espi([P ]) ρ φE = (p, φ′E)) ∧ (Aspi([P ]) ρ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

The proof is by structural induction on P (in what follows, we have that fst(x1, x2) = x1

and snd(x1, x2) = x2).

The base case: 0

Aspi([0]) ρ φA = φA by (Aspi1)

Espi([0]) ρ φE = (∅, φE) by (Espi1)

Here we have from the antecedent:

Aspi([P ]) ρ0 φA = φ′A

Espi([P ]) ρ0 φE = (p, φ′E)

Since φ′E = φE and φ′A = φA, this satisfies the safety requirement as follows:

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

The induction step.

Case 1: x(y).P

Aspi([M(x).P ]) ρ φA = φA by (Aspi2)

Espi([M(x).P ]) ρ φE = ({|in(ϕE(φE ,M), λx.p′)|}, φE)

where, (p′, φ′E) = Rspi([{|P |}ρ]) φE and, ϕE(φE ,M) ∈ N by (Espi2)
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From the antecedent, we have that:

Aspi([P ]) ρ0 φA = φ′A

Espi([P ]) ρ0 φE = (p, φ′E)

Since φ′E = φE and φ′A = φA, this satisfies the induction step and the safety requirement as

follows:

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Case 2: M〈N〉.P

Aspi([M〈Lt〉.P ]) ρ φA = (
⋃
φ

M ′(z).P ′∈ρ
φ′A) ∪φ φA

if, untag(ϕA(φA,M)) ∩ untag(ϕA(φA,M
′)) ∩N 6= {}

where, φ′A = Rspi([{|P |}ρ ]ρ ρ[P ′/M ′(z).P ′]]) φ′′A

and, φ′′A = φA[αk,k′(z) 7→ φA(αk,k′(z)) ∪ {αk,k′(t)}] by (Aspi3)

Espi([M〈L〉.P ]) ρ φE =

(
⊎

M ′(z).P ′∈ρ
{|tau(p′)|} ] {|out(ϕE(φE ,M), ϕE(φE , L), p′′)|},

⋃
φ

M ′(z).P ′∈ρ
φ′E ∪φ φE)

if, ϕE(φE ,M) = ϕE(φE ,M
′) ∈ N

where, (p′, φ′E) = Rspi([{|P |}ρ ]ρ ρ[P ′/M ′(z).P ′]]) φE [z 7→ {ϕE(φE , L)}]

and, (p′′, φ′′E) = Rspi([{|P |}ρ]) φE by (Espi3)

We only consider the safety of the first φ′A environment (the safety of the second φA envi-

ronment follows from the base case). Extending φ′A and (p′, φ′E) in the above rules yields:

φ′A =
⋃
φ

P∈ρ′
Aspi([P ]) ρ[P ′\M ′(z).P ′] φ′′A

(p′, φ′E) = (
⊎
P∈ρ

p′′′,
⋃
φ

P∈ρ
φ′′′E )

where, (p′′′, φ′′′E ) = Espi([P ]) ρ[P ′\M ′(z).P ′] φE [z 7→ {ϕE(φE , L)}]

From the antecedent, we have that:

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))
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From the above values of φ′′′E and φ′′A we have that:

(∃M ∈ Term : ϕE(φ
′′′
E , L) ∈ φ′′′E (z) ⇒ ∃t ∈ φ′′A(αk,k′(z)) : value of ({t}) = {L′} ∧

untag(L′) = (∀y ∈ bnv(L) : L[αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y])) (From the antecedent)

By the induction hypothesis for P :

(Espi([P ]) ρ[P ′\M ′(z).P ′] φE [z 7→ {ϕE(φE , L)}] = (p′′′, φ′′′E )) ∧

(Aspi([P ]) ρ[P ′\M ′(z).P ′] φ′′A = φ′′′A) ∧

(∃M ∈ Term : ϕE(φE [z 7→ {ϕE(φE , L)}], L) ∈ φE [z 7→ {ϕE(φE , L)}](z) ⇒

∃t ∈ φ′′A(αk,k′(z)) : value of ({t}) = {L′} ∧ untag(L′) = (∀y ∈ bnv(L) : L[αk,k′(y)/y]))

By the safety of the ∪φ relation (Lemma 2), we arrive at the following result (where p′′′, φ′′′E

and φ′′′A are given in the above induction hypothesis result for P ):

(
⊎

M ′(z).P ′∈ρ
{|tau(

⊎
P∈ρ

p′′′)|} ,
⋃
φ

M ′(z).P ′∈ρ

⋃
φ

P∈ρ
φ′′′E ) = p, φ ∧ (

⋃
φ

M ′(z).P ′∈ρ

⋃
φ

P∈ρ′
φ′′′A) = φ′ ∧

(∃L ∈ Term : ϕE(φ
′′′
E , L) ∈ φ′′′E (z) ⇒ ∃t ∈ φ′′′A(αk,k′(z)) : value of ({t}) = {L′} ∧

untag(L′) = (∀y ∈ bnv(L) : L[αk,k′(y)/y]))

⇒ (∃L ∈ Term : ϕE(φ,L) ∈ φ(z) ⇒ ∃t ∈ φ′(αk,k′(z)) : value of ({t}) = {L′} ∧

untag(L′) = (∀y ∈ bnv(L) : L[αk,k′(y)/y]))

Which satisfies the induction step and the safety requirement.

Case 3: (ν a)P

Aspi([(νa)P ]) ρ φA = Rspi([{|P |}ρ ]ρ ρ]) φA =
⋃
φ

P∈ρ′
Aspi([P ]) ρ φA (by Aspi4)

Espi([(νa)P ]) ρ φE = (new(λa.p′), φ′E)

where, (p′, φ′E) = Rspi([{|P |}ρ ]ρ ρ]) φE = (
⊎
P∈ρ

p′′,
⋃
φ

P∈ρ
φ′′E)

and, (p′′, φ′′E) = Espi([P ]) ρ φE (by Espi4)

By the induction hypothesis for P :

(Espi([P ]) ρ φE = (p, φ′E)) ∧ (Aspi([P ]) ρ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))
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By the safety of the ∪φ relation (Lemma 2), we arrive at the following result:

(new(λa.
⊎
P∈ρ

fst(Espi([P ]) ρ φE)) ,
⋃
φ

P∈ρ
snd(Espi([P ]) ρ φE)) = (p, φ) ∧

(
⋃
φ

P∈ρ′
Aspi([P ]) ρ φA = φ′) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Which satisfies the induction step and the safety requirement.

Case 4: P | Q

Aspi([P | Q]) ρ φA = Rspi([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φA =
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φA (by Aspi5)

Espi([P | Q]) ρ φE = Rspi([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ]) φE = (
⊎
P∈ρ′

p′,
⋃
φ

P∈ρ′
φ′E)

where, (p′, φ′E) = Espi([P ]) ρ′′ φE

and, ρ′′ = ρ′\{|P |}ρ and ρ′ = {|P |}ρ ]ρ {|Q|}ρ ]ρ ρ (by Espi5)

By the induction hypothesis for P :

(Espi([P ]) ρ′′ φE = (p′, φ′E)) ∧ (Aspi([P ]) ρ′′ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

By the safety of the ∪φ relation (Lemma 2), we arrive at the following result:

(
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φE),
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φE)) = (p, φ) ∧ (

⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φA) = φ′ ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Which satisfies the induction step and the safety requirement.
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Case 5: !P

Aspi([!P ]) ρ φA = FspiA (−1)

where, FspiA (n) = let φ1 = Aspi([
n∏
i=1

ren(P, i) ]) ρ φA in

let φ2 = Aspi([
n+1∏
i=1

ren(P, i) ]) ρ φA in

if φ1 = φ2 then φ1 else Fspi(n+ 1)

and, ∀x ∈ bnv(P ), t ∈ tags of (P ) : ren(P, i) = (P [xi/x])[ti/t] (by Aspi6)

Espi([!P ]) ρ φE = Fspi(−1)E

where, FspiE (n) = let v1 = Espi([
n∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE in

let v2 = Espi([
n+1∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE in

if v1 = v2 then v1 else Fspi(n+ 1) (by Espi6)

The proof proceeds by mathematical induction, where we demonstrate that FspiA (−1) is safe

with respect to FspiE (−1) (base case) and that if FspiA (n) is safe with respect to FspiE (n) then

FspiA (n+ 1) is safe with respect to FspiE (n+ 1) (inductive step).

The base case: n = −1

FspiA (−1) = let φ1 = ⊥D] in

let φ2 = Aspi([ 0 ]) ρ φA in

if φ1 = φ2 then φ1 else FspiA (0)

FspiE (−1) = let v1 = (⊥Pi⊥ ,⊥D) in

let v2 = Espi([ 0 ]) ρ φE in

if v1 = v2 then v1 else FspiE (0)

From the above two calculations, we have that ⊥D] = φA0 is a safe abstraction of ⊥D = φE0

since ∀x ∈ dom(φE0) : φE0(x) = φA0(x) = {}. Also, since we proved the case for P = 0

(The second computation of Fspi) earlier, then we have that:

(Espi([0]) ρ φE = (p, φ′E)) ∧ (Aspi([0]) ρ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))
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The induction step:

We start by assuming the inductive hypothesis:

(FspiE (n) = p′, φ′E) ∧ (FspiA (n) = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Now, we prove that the same safety relation holds for FspiA (n+1) with respect to FspiE (n+1):

FspiA (n+ 1) = let φ1 = Aspi([
n+1∏
i=1

ren(P, i) ]) ρ φA in

let φ2 = Aspi([
n+2∏
i=1

ren(P, i) ]) ρ φA in

if φ1 = φ2 then φ1 else FspiA (n+ 2)

FspiE (n+ 1) = let v1 = Espi([
n+1∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE in

let v2 = Espi([
n+2∏
i=1

P [bni(P )/bn(P )] ]) ρ φE in

if v1 = v2 then v1 else FspiE (n+ 2)

From the induction hypothesis, we know that:

(Espi([
n+1∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE = p′, φ′E) ∧ (Aspi([
n+1∏
i=1

ren(P, i) ]) ρ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

The remaining case involves:

Aspi([
n+2∏
i=1

ren(P, i) ]) ρ φA and Espi([
n+2∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE .

We can rewrite these as:

Aspi([
n+2∏
i=1

ren(P, i) ]) ρ φA = Aspi([
n+1∏
i=1

ren(P, i) | ren(P, n+ 2) ]) ρ φA

Espi([
n+2∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE =

Espi([
n+1∏
i=1

P [bnv i(P )/bnv(P )] | P [bnvn+2(P )/bnv(P )] ]) ρ φE
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From the induction hypothesis, we have that:

(Espi([
n+1∏
i=1

P [bnv i(P )/bnv(P )] ]) ρ φE = p′, φ′E) ∧ (Aspi([
n+1∏
i=1

ren(P, i) ]) ρ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

And from the antecedent:

(Espi([ P [bnvn+2(P )/bnv(P )] ]) ρ φE = p′, φ′E) ∧ (Aspi([ ren(P, n+ 2) ]) ρ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

We have already proven the case for the parallel composition of two processes,

Aspi([ P | Q ]) ρ φA and Espi([ P | Q ]) ρ φE (case 5). Hence, we can conclude that:

(FspiE (n+ 1) = p′, φ′E) ∧ (FspiA (n+ 1) = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

From both the base case and the induction step, we can conclude that:

(Espi([ !P ]) ρ φE = p′, φ′E) ∧ (Aspi([ !P ]) ρ φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))
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Case 6: if M = N then P else Q

Aspi([if M = L then P else Q]) ρ φA = Rspi([{|P |}ρ ]ρ ρ]) φA, if, untag(ϕA(φA,M)) ∩ untag(ϕA(φA, L)) 6= {}

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

where, Rspi([{|P |}ρ ]ρ ρ])s φA =
⋃
φ

P∈ρ′P

Aspi([P ])s ρ
′′
P φA

and, Rspi([{|Q|}ρ ]ρ ρ])s φA =
⋃
φ

P∈ρ′Q

Aspi([Q])s ρ
′′
Q φA (by Aspi7)

Espi([if M = L then P else Q]) ρ φE = Rspi([{|P |}ρ ]ρ ρ]) φE , if ϕE(φE ,M) = ϕE(φE , L)

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

where, Rspi([{|P |}ρ ]ρ ρ])s φE =
⋃
φ

P∈ρ′P

Espi([P ])s ρ
′′
P φE

and, Rspi([{|Q|}ρ ]ρ ρ])s φE =
⋃
φ

P∈ρ′Q

Espi([Q])s ρ
′′
Q φE (by Espi7)

Where, ρ′P = {|P |}ρ ]ρ ρ, ρ′Q = {|Q|}ρ ]ρ ρ, ρ′′P = ρ′P \{|P |}ρ and ρ′′Q = ρ′Q\{|Q|}ρ.

Hence, from the inductive hypothesis for P (the same applies to Q):

(Espi([P ]) ρ′′P φE = φ′E) ∧ (Aspi([P ]) ρ′′P φA = φ′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

By the safety of the ∪φ relation (Lemma 2), we arrive at the following result:

(
⋃
φ

P∈ρ′
Espi([P ]) ρ′′P φE) = φ ∧ (

⋃
φ

P∈ρ′
Aspi([P ]) ρ′′P φA) = φ′ ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Which satisfies the induction step and the safety requirement.
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Case 7: let (x1, . . . , xn) = (M1, . . . ,Mn) in P else Q

Aspi([let (x1, . . . , xn) = M in P else Q]) ρ φA =

⋃
φ

(M
t1
1 ,...,Mtn

n )∈ϕA(φA,M)

Rspi([{|P |}ρ ]ρ ρ]) φ′A,

if ∃(M t1
1 , . . . ,M

tn
n ) ∈ ϕA(φA,M)

where, φ′A = φA[αk,k′(x1) 7→ φA(αk,k′(x1)) ∪ {αk,k′(t1)}, . . . ,

αk,k′(xn) 7→ φA(αk,k′(xn)) ∪ {αk,k′(tn)}]

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

by (Aspi8)

Espi([let (x1, . . . , xn) = M in P else Q]) ρ φE =
Rspi([{|P |}ρ ]ρ ρ]) φ′E , if ϕE(φE ,M) = (t1, . . . , tn)

where, φ′E = φE [x1 7→ {t1}, . . . , xn 7→ {tn}]

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

by (Espi8)

We extend the following constructs:

Rspi([{|P |}ρ ]ρ ρ]) φ′A =
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φ′A

Rspi([{|P |}ρ ]ρ ρ]) φ′E = (
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φ′A) ,
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φ′A))

where, ρ′′ = ρ′\{|P |}ρ and ρ′ = {|P |}ρ ]ρ ρ (the same expansion applies to Q)

From the induction hypothesis, and ∀N ∈ Term, we have that:

(∃N ∈ Term : ϕE(φE , N) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {N ′} ∧

untag(N ′) = (∀y ∈ bnv(N) : N [αk,k′(y)/y]))

And from the above values of φ′E and φ′A, we can arrive at:

(∃Mj ∈ Term : ϕE(φE ,Mj) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′j} ∧

untag(M ′j) = (∀y ∈ bnv(Mj) : Mj [αk,k′(y)/y]))

⇒ (∃N ∈ Term : ϕE(φ
′
E , N) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {N ′} ∧

untag(N ′) = (∀y ∈ bnv(N) : N [αk,k′(y)/y]))

Hence, from the inductive hypothesis for P , we have that:

(Espi([P ]) ρ′′ φ′E = (p′′, φ′′E)) ∧ (Aspi([P ]) ρ′′ φ′A = φ′′A) ∧

(∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′′
E ,M) ∈ φ′′E(x) ⇒ ∃t ∈ φ′′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))
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By the safety of the ∪φ relation (Lemma 2), we arrive at the following result:

((
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φ′A) ,
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φ′A))) = (p, φ) ∧

(
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φ′A) = φ′ ∧

(∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Which satisfies the induction step and the safety requirement.

Case 8: case {M}N of {x}N in P else Q

Aspi([case {M}N of {x}N in P else Q]) ρ φA =

⋃
φ

{Mtag}n∈ϕA(φA,{M}N )

Rspi([{|P |}ρ ]ρ ρ]) φ′A, if, n ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(tag)}]

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

by (Aspi9)

Espi([case {M}N of {x}N in P else Q]) ρ φE =
Rspi([{|P |}ρ ]ρ ρ]) φ′E , if ϕE(φE , {M}N ) = sec(t, k) and ϕE(φE , N) = k

where, φ′E = φE [x 7→ {t}]

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

by (Espi9)

Where, ρ′ = {|P |}ρ ]ρ ρ and ρ′′ = ρ′\{|P |}ρ.

We extend the following constructs:

Rspi([{|P |}ρ ]ρ ρ]) φ′A =
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φ′A

Rspi([{|P |}ρ ]ρ ρ]) φ′E = (
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φ′A) ,
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φ′A))

From the induction hypothesis and ∀N ∈ Term:

(∃N ∈ Term : ϕE(φE , N) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {N ′} ∧

untag(N ′) = (∀y ∈ bnv(N) : N [αk,k′(y)/y]))

Setting φ′E = φE [x 7→ {t}] and φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(tag)}], then:

(∃T ∈ Term : ϕE(φ
′
E , T ) ∈ φ′E(x) ⇒ ∃tag ∈ φ′A(αk,k′(x)) : value of ({tag}) = {T ′} ∧

untag(T ′) = (∀y ∈ bnv(T ) : T [αk,k′(y)/y])) Where ϕE(φE , T ) = t in rule (Espi9)
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⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Hence, from the inductive hypothesis for P , we have:

(Espi([P ]) ρ′′ φ′E = φ′′E) ∧ (Aspi([P ]) ρ′′ φ′A = φ′′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

By the safety of the ∪φ relation (Lemma 2), we arrive at the following result:

(
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φ′A) ,
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φ′A)) = (p, φ) ∧

(
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φ′A) = φ′ ∧

(∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Which satisfies the induction step and the safety requirement.

Case 9: case {[M ]}N of {[x]}N in P else Q

Aspi([case {[M ]}N of {[x]}N in P else Q]) ρ φA =

⋃
φ

{[Mtag ]}n+∈ϕA(φA,{[M ]}N )

Rspi([{|P |}ρ ]ρ ρ]) φ′A, if, n− ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(tag)}]

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

by (Aspi9)

Espi([case {[M ]}N of {[x]}N in P else Q]) ρ φE =
Rspi([{|P |}ρ ]ρ ρ]) φ′E , if ϕE(φE , {[M ]}N ) = pub(t, k+) and ϕE(φE , N) = k−

where, φ′E = φE [x 7→ {t}]

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

by

(Espi9)

Where, ρ′ = {|P |}ρ ]ρ ρ and ρ′′ = ρ′\{|P |}ρ.
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We extend the following constructs:

Rspi([{|P |}ρ ]ρ ρ]) φ′A =
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φ′A

Rspi([{|P |}ρ ]ρ ρ]) φ′E = (
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φ′A) ,
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φ′A))

From the induction hypothesis and ∀N ∈ Term:

(∃N ∈ Term : ϕE(φE , N) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {N ′} ∧

untag(N ′) = (∀y ∈ bnv(N) : N [αk,k′(y)/y]))

Setting φ′E = φE [x 7→ {t}] and φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(tag)}], then:

(∃T ∈ Term : ϕE(φ
′
E , T ) ∈ φ′E(x) ⇒ ∃tag ∈ φ′A(αk,k′(x)) : value of ({tag}) = {T ′} ∧

untag(T ′) = (∀y ∈ bnv(T ) : T [αk,k′(y)/y])) Where ϕE(φE , T ) = t in rule (Espi9)

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Hence, from the inductive hypothesis for P , we have:

(Espi([P ]) ρ′′ φ′E = φ′′E) ∧ (Aspi([P ]) ρ′′ φ′A = φ′′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

By the safety of the ∪φ relation (Lemma 2), we arrive at the following result:

(
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φ′A) ,
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φ′A)) = (p, φ) ∧

(
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φ′A) = φ′ ∧

(∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Which satisfies the induction step and the safety requirement.
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Case: 10 case [{M}]N of [{x}]N in P else Q

Aspi([case [{M}]N of [{x}]N in P else Q]) ρ φA =

⋃
φ

[{Mtag}]n−∈ϕA(φA,[{M}]N )

Rspi([{|P |}ρ ]ρ ρ]) φ′A, if, n+ ∈ ϕA(φA, N)

where, φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(tag)}]

Rspi([{|Q|}ρ ]ρ ρ]) φA, otherwise

by (Aspi9)

Espi([case [{M}]N of [{x}]N in P else Q]) ρ φE =
Rspi([{|P |}ρ ]ρ ρ]) φ′E , if ϕE(φE , [{M}]N ) = sig(t, k−) and ϕE(φE , N) = k+

where, φ′E = φE [x 7→ {t}]

Rspi([{|Q|}ρ ]ρ ρ]) φE , otherwise

by (Espi9)

Where, ρ′ = {|P |}ρ ]ρ ρ and ρ′′ = ρ′\{|P |}ρ.

We extend the following constructs:

Rspi([{|P |}ρ ]ρ ρ]) φ′A =
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φ′A

Rspi([{|P |}ρ ]ρ ρ]) φ′E = (
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φ′A) ,
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φ′A))

From the induction hypothesis and ∀N ∈ Term:

(∃N ∈ Term : ϕE(φE , N) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {N ′} ∧

untag(N ′) = (∀y ∈ bnv(N) : N [αk,k′(y)/y]))

Setting φ′E = φE [x 7→ {t}] and φ′A = φA[αk,k′(x) 7→ φA(αk,k′(x)) ∪ {αk,k′(tag)}], then:

(∃T ∈ Term : ϕE(φ
′
E , T ) ∈ φ′E(x) ⇒ ∃tag ∈ φ′A(αk,k′(x)) : value of ({tag}) = {T ′} ∧

untag(T ′) = (∀y ∈ bnv(T ) : T [αk,k′(y)/y])) Where ϕE(φE , T ) = t in rule (Espi9)

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Hence, from the inductive hypothesis for P , we have:

(Espi([P ]) ρ′′ φ′E = φ′′E) ∧ (Aspi([P ]) ρ′′ φ′A = φ′′A) ∧

(∃M ∈ Term : ϕE(φE ,M) ∈ φE(x) ⇒ ∃t ∈ φA(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))
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By the safety of the ∪φ relation (Lemma 2), we arrive at the following result:

(
⊎
P∈ρ′

fst(Espi([P ]) ρ′′ φ′A) ,
⋃
φ

P∈ρ′
snd(Espi([P ]) ρ′′ φ′A)) = (p, φ) ∧

(
⋃
φ

P∈ρ′
Aspi([P ]) ρ′′ φ′A) = φ′ ∧

(∃M ∈ Term : ϕE(φ
′
E ,M) ∈ φ′E(x) ⇒ ∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

⇒ (∃M ∈ Term : ϕE(φ,M) ∈ φ(x) ⇒ ∃t ∈ φ′(αk,k′(x)) : value of ({t}) = {M ′} ∧

untag(M ′) = (∀y ∈ bnv(M) : M [αk,k′(y)/y]))

Which satisfies the induction step and the safety requirement.
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