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Abstract

We introduce a static analysis framework for detecting instances of security breaches in
infinite mobile and cryptographic systems specified using the languages of the w-calculus
and its cryptographic extension, the spi calculus. The framework is composed from three
components: First, standard denotational semantics of the m-calculus and the spi calculus
are constructed based on domain theory. The resulting model is sound and adequate with
respect to transitions in the operational semantics. The standard semantics is then extended
correctly to non-uniformly capture the property of term substitution, which occurs as a
result of communications and successful cryptographic operations. Finally, the non-standard
semantics is abstracted to operate over finite domains so as to ensure the termination of
the static analysis. The safety of the abstract semantics is proven with respect to the non-
standard semantics. The results of the abstract interpretation are then used to capture
breaches of the secrecy and authenticity properties in the analysed systems. Two initial
prototype implementations of the security analysis for the m-calculus and the spi calculus
are also included in the thesis.

The main contributions of this thesis are summarised by the following. In the area of
denotational semantics, the thesis introduces a domain-theoretic model for the spi calculus
that is sound and adequate with respect to transitions in the structural operational seman-
tics. In the area of static program analysis, the thesis utilises the denotational approach as
the basis for the construction of abstract interpretations for infinite systems modelled by
the m-calculus and the spi calculus. This facilitates the use of computationally significant
mathematical concepts like least fixed points and results in an analysis that is fully compo-
sitional. Also, the thesis demonstrates that the choice of the term-substitution property in
mobile and cryptographic programs is rich enough to capture breaches of security properties,
like process secrecy and authenticity. These properties are used to analyse a number of mo-
bile and cryptographic protocols, like the file transfer protocol and the Needham-Schroeder,
SPLICE/AS, Otway-Rees, Kerberos, Yahalom and Woo Lam authentication protocols.
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Chapter 1

Introduction

1.1 The Problem of Computer Security

The issue of security in computing systems developed as an independent research discipline
in the early 1970s, although much of the earlier work had been carried out as part of other
research areas, particularly in relation to operating systems and databases. Despite the fact
that many of the early papers in computer security are difficult to obtain nowadays, there are
some entities that maintain collections of such papers. One example is the comprehensive
collection provided by NISTs Computer Security Resource Center (CSRC)?.

The early forms of computer security were restricted to the protection of data and pro-
grams running on isolated monolithic mainframe machines or on limited multi-user or multi-
program systems. Such protection mainly consisted of access control and authorization
mechanisms and relied, to a large extent, on protecting the physical access to these ma-
chines. Later, the introduction and success of computer networking gave a new perspective
to computer security. Networks meant that users and machines could share information over
a wide range of distances. The implications soon became clear: data and files could be vul-
nerable to attacks from other users/programs not only within the machines themselves, but
also over the network. Cryptography was utilised as an effective solution to the protection
of data and programs from these new threats.

In the last decade or so, the issue of computer security has become even more intricate and
sophisticated with the advent of wide area distributed systems like the Internet, and dynamic
mobile technologies. Such advancements not only facilitated the integration of computers

into every day life activities, but also provided features like transparency, anonymity, and

IThe collection is available at: http://csrc.nist.gov/publications/history/



mobility, all of which opened the gates for new forms of computer and information attacks
to be launched. In almost every research area related to the modern technologies underlying
e-commerce, global communications and pervasive computing, the element of security is a
necessity for the protection of our identities, data and material property.

Nowadays, it is often a common practice to use credit cards to purchase goods and pay
for services online over the Internet. Taking this practice as an example, the security threats
posed are several: fraud resulting from compromising the secrecy of credit card information
by malicious attackers, the integrity of the data transmitted during a payment session, the
authenticity of the site offering goods or services, anonymity and non-repudiation issues re-
lated to transactions, etc. Cryptographic protocols have been devised to resolve the problems
of secrecy and authenticity by using secret-key cryptography and public-key infrastructure
to ensure that communications maintain certain levels of security requirements.

As a second example, consider the downloadable code fragments that often enter the
address space of computers connected to the Internet. Special treatment of mobile code
is necessary in order to avoid leaking private information to external sources as well as
damaging internal data. Therefore, safety measures like bounded sandboxes, which prevent
applets from accessing local file systems and initiating ad-hoc network connections, have
been devised.

All these new demands for computer security have prompted the task of designing and
implementing more robust systems that are inherently secure. An important aspect of this
task is program analysis, which helps the understanding of the way programs will behave
and their properties once executed. Broadly speaking, one may divide program analysis
into two categories: runtime and compile-time analysis. Runtime analysis relies on dynamic
techniques that gather information about programs during their execution or testing. This
information is then used to reason about the properties of a program and subsequently
will affect the way data and control flow in that program. In general, runtime analysis
has focused on traditional ad-hoc monitoring techniques used in performance monitoring,
distributed debugging, etc. and has not yet demonstrated much use of formal methods
techniques (except for a few examples like runtime type checking and program specification
guidance). On the other hand, compile-time analysis has benefited much from the use of
formal methods techniques, in particular model checking, theorem proving and abstract
interpretation. Unlike the runtime analysis, which has a real-time narrow view of a program
computation, a compile-time analysis is only applicable at the compilation stage and can
approximate properties about all the possible computations of that program.

The approach to the problem of detecting security threats in computer systems as con-



tributed by this thesis involves the introduction of an abstract interpretation-based static
analysis framework for the verification of security-related properties of infinite mobile and
cryptographic systems whose meaning is defined by a denotational semantics. The frame-
work is general; it can be accommodated to different languages, properties and abstractions.
However, in our case, we target closed systems specified with the language of the m-calculus
and its cryptographic-extension, the spi calculus, and deal with open systems by modelling
the intruder within the specification. We capture the name-passing behaviour within mo-
bile systems and the term-passing and term-processing? behaviours within cryptographic
protocols through the abstract interpretation of programs. This abstract interpretation is
non-uniform; the number of copies of each term appearing in the results of the interpretation
can be adjusted depending on the nature of properties sought. The information obtained
from the abstract interpretation is then used to further analyse these programs to detect
the presence of any secrecy or authenticity breaches.

In the rest of this introduction, we describe the basics underlying four main components
of our static analysis framework. These include mobile systems (and their security-related
extensions), denotational semantics, static program analysis, and computer security. Each
of these components constitutes a major area of research that overlaps with the other areas.
We only give a brief overview of each of these components in a manner that is specific to our
framework and avoid going into too much detail, referring enthusiastic readers to references

on each subject involved.

1.2 Mobile Systems

The word mobile in the real world is normally used to describe the state of any object,
location, condition etc. that is moving with respect to some reference. In the context
of computing systems, mobility may refer to the movement of communication channels,
code, or whole computing environments. For example, HTML links can be created, sent to
other entities and destroyed later. References to objects in object-oriented programming are
created and passed around as capabilities of communication. In Java, applet code embedded
in Web pages can be downloaded and executed dynamically at runtime by the host machine.

”

The movement of “intelligent” mobile agents constitutes a form of code and state mobility.
Finally, the emerging component-based technologies and pervasive/ubiquitous computing

are interesting examples of mobile computing environments.

2Term processing is the term we use to refer to the cryptographic operations performed by processes on

terms in the spi calculus.



From a process algebraic point of view, there are two widely accepted definitions of

mobility [96]:

1. Link-based mobility.
The concept of link-based mobility states that the movement of a process among
other processes can in fact be described as the proliferation, change and extinction
of the communication channels linking that process to the rest. In other words, this
corresponds to the movement of links in the virtual space of linked processes. The basic
notion of communication here is that of process interaction, where processes interact
to exchange links. This induces the behaviour of message passing. The resulting
mobility is expressively powerful and can be used to encode the higher-order notion
of process-based mobility, in which whole processes (not just links) can move in the
virtual space of linked processes. The m-calculus [97, 96, 114] is among the most

authoritative models that embrace the link-based definition of mobility.

2. Location-based mobility.
Unlike the link-based definition of mobility, which describes a virtual movement of
links, the location-based definition relies on the physical aspect of mobility. According
to this definition, mobility is the movement of processes in the space of locations.
For example, the movement of a laptop from one local area network to another is
viewed as the movement of a computing process (the laptop) from one parent location
(first LAN) to another (second LAN). The best example of a formalism that adopts the
concept of location-based mobility is the Mobile Ambients calculus [38], which is mainly
influenced by Internet programming and the presence of administrative domains that

divide wide area networks in general.

By and large, the modelling of mobility in computing systems has benefited a good deal
from the body of theory that was developed earlier for the modelling of static concurrent and
distributed systems. Formalisms such as Petri nets [107], CSP [75] and CCS [93] provided
the necessary mature ground for the arrival of the first substantial theory of mobility; the
m-calculus. The development of the w-calculus was directly inspired by the calculus of [50],
where label-passing was added to the theory of CCS to model the dynamic configuration
of networks. In the w-calculus, the theory was further simplified by adopting the unique
notion of a name (hence identifying variables and constants). Names refer to channels
of communication and can be communicated over other names. The concept of mobility is
grasped by allowing processes to exchange names of channels, and hence modify the network

configuration dynamically.



The m-calculus is a highly expressive language that is also capable of encoding statically
distributed systems and functional programming (A-calculus). The language is characterized
as being directly executable and has formed the basis for other programming languages like
Piccola [9], Join [64], Pict [108] and Nomadic Pict [132]. It has also provided the basis for
many extended models that are concerned with different aspects and properties of mobile
systems. The extension we are interested in is the spi calculus [5], which extends the language
of the m-calculus by the addition of cryptographic primitives like encryption/decryption and
digital signing/verification. Reasoning about the different properties of cryptographic pro-
tocols is based on a theory of testing-equivalence. Properties like privacy and authentication
are defined as equivalences in the presence of intruder processes.

The popularity of the m-calculus led to the development of the Mobile Ambients calculus
that adopts a different approach in the modelling of mobility. Unlike the location-transparent
m-calculus, the Mobile Ambients adopts the notion of an ambient as its main idea and it
is most suitable for the modelling of computing agents that can move from one location to
another. Ambients are bounded places where computations can take place. The boundary of
an ambient is significant to its movement, since it determines exactly what entity will move.
It is also significant from the security perspective as it acts as an access control mechanism
determining what boundaries can or cannot be crossed. Examples of ambients include a
virtual address space, a laptop, a Unix file system and a single Java object. Furthermore,
ambients may be nested within other ambients.

Amongst other formalisms, which adopt definitions of mobility that overlap definitions
(1) and (2) above and that have been shown to be interesting, is the seal calculus [129].
Seals are named locations that are passed around and can have portals opened for remote
communications occurring with the parent and child seals, while allowing for local commu-
nications to take place directly within the same seal. The seal calculus extends the polyadic
m-calculus [95], and in comparison to the Mobile Ambients calculus, it adopts an objective
movement of locations; movement is initiated by the environment surrounding a seal. The
Mobile Ambients calculus, on the other hand, adopts subjective mobility allowing ambients
to initiate the movement.

The seal calculus elegantly models Internet programming. It adheres to a number of
principles that are reminiscent of Internet-like programming. These include the distinction
between remote and local communications, locations, restricted connectivity and access
control. In particular, the modelling of security notions that rely on locations and scoping,
like the perfect firewall equation, is straightforward.

One of the interesting issues currently debated within the area of mobility formalisms



and security is whether there is a need for combining location-based mobility languages, like
the Mobile Ambients and seal calculi, with cryptographic primitives in a similar manner to
the spi calculus. The analogy between the concepts of a mobile location and a ciphertext
encrypted with a symmetric key is prevalent. However, it is less obvious when dealing with
asymmetric-key cryptography and operations like hashing. Nonetheless, the modelling of
mechanisms, like remote communications (e.g. RPC and RMI), could well benefit from such
a combination.

In our static analysis framework, we adopt the m-calculus as the main specification lan-
guage for mobile systems. We also adopt its security extension, the spi calculus, for the spec-
ification of mobile systems enhanced with cryptography. This decision is motivated by two
reasons: first, the fact that both languages are more mature than any of the location-based
languages means that more theory is available. Second, there are very few cryptographic
extensions of the location-based languages [111], therefore, cryptographic protocols have not
been studied in light of such models. Nonetheless, extending the current framework to the
Mobile Ambients calculus and/or the seal calculus should benefit our cause and will provide

additional understanding of how security mechanisms, in general, behave in mobile systems.

1.3 Denotational Semantics

The denotational (also known as the mathematical) approach to the definition of the se-
mantics of programming languages was initiated by Christopher Strachey and instrumented
by Dana Scott in the late 1960s and early 1970s [118, 117, 123, 115, 122, 131]. The idea
suggested by Scott and Strachey was to develop a mathematical framework within which
the formal semantics of programming languages could be specified without the traditional
implementation-dependant problems associated with operational semantics and that would
rely on the rigor that mathematics offers. Indeed, this framework later became an inspiration
for computer language designers and implementers.

The basis of any denotational model is that syntactic phrases are realisations of abstract
mathematical objects. For example, in a calculator device, strings of digits are perceived
as abstract numerical ideas regardless of the format in which those digits are presented on
the screen. Another example is the functional view that programs stand for mathematical
functions, and the execution of a program, given some input data, resembles the application
of a function to its parameters.

In general, for any syntactically correct program, there exists a mathematical object

known as the denotation of that program that expresses the meaning of the program in a



clear and non-circular (i.e. needless of further definitions) manner. Based on this, one may

divide a denotational model into three components:

1. Syntactic domains. These are the collection of entities that constitute the syntactical
representation of the language constructs and whose meaning is sought. Syntactic
domains include digits, numerals, expressions, instructions, phrases and programs.
The syntactic domains we adopt here are abstract [89], as opposed to the concrete
syntactic domains, which normally introduce unnecessary syntactic sugar useful only
for the parsing of programs and does not contribute to their meaning. Furthermore,
the syntactic notation we adopt is a version of the Backus-Naur Form (BNF) [17],
which describes context-free grammars. Classical readings on the subject of syntax

include [41, 16].

2. Semantic domains. These are collections of mathematical objects (denotations) that
convey the meaning of the syntactical entities. Elements of these objects usually have
some structure, like complete partial orders (CPOs), lattices or domains, whose algebra
is determined by domain theory. The semantic elements are usually classified as either
primitive or complex elements, where the bottom element in these domains often
denotes the undefined program. Primitive elements constitute the atomic semantic
elements whereas complex elements are necessary to convey more sophisticated ideas
that can be decomposed back to the primitive elements. For example, it is common
in the theory of the w-calculus to interpret parallelism in terms of the simpler notions

of input/output and non-determinism.

3. Semantic functions. These are special functions that map programs, phrases etc. from
their syntactic domains to their denotations in the semantic domains. Often, there
are certain requirements that need to be satisfied by semantic functions, for example,

being monotonic and continuous.

In general, a denotational semantics has to respect the principle of compositionality. Com-
positionality states that the meaning of a program can be defined in terms of the meanings
of its subprograms. A discussion on the principle of compositionality in the definition of
language semantics can be found in [125]. Also, the well known Pisa Notes® on domains
compiled by Gordon Plotkin are a traditional reading in the subject of domain theory and
its application to semantics.

One of the main advantages that the denotational semantics approach introduced is that

the behaviour of any program could be determined directly through the mathematics of

3Notes can be downloaded from http://www.dcs.ed.ac.uk/home/gdp/publications/Domains.ps.gz



domain theory without the need to execute that program, and consequently, without the
need to design any language compilers or interpreters. As a result, program verification
and comparison becomes an easier task compared to other approaches to the definition of
language semantics.

The fact that the denotational approach relies, to a large degree, on domain theory means
that several powerful mathematical tools become available for reasoning about program
semantics. Mainly, concepts like CPOs, continuous functions and least fixed points are
easier to express and implement. For example, it is often the case that demonstrating the
termination of a static analysis is dependent on the evaluation of least fixed points.

Finally, the idea of using semantic functions to denote the meaning of programs created
a close relationship between the theory of denotational semantics and the functional pro-
gramming paradigm. The task of implementing denotational interpreters using functional
languages becomes fairly straightforward. Any static analysis that, in turn, is based on the
denotational semantics of the language can also be directly implemented as a higher-level
abstraction (i.e. semantics-directed). The implementations of fixed points are also standard

in functional languages.

1.4 Static Program Analysis

Quite often, it is desirable to predict in advance the set of values resulting from programs
and verify certain properties regarding their runtime behaviour. For this purpose, the area of
static program analysis offers compile-time computable techniques that can be used to safely
approximate properties and values of programs without the need to execute them directly
on computers. The functionality covered by static analysers is wide and ranges from simple
syntactic verifications that can be used in program transformations to complex runtime
properties related to issues of security and optimisation. In general, many approaches exist

for building static analysers. Here, we distinguish four main approaches [102].

1.4.1 Data Flow Analysis

Motivated by the aim of producing smaller and faster programs, the main application area
of the data flow analysis approach has always been the performance optimisation of pro-
gram code generated by compilers. Other important applications that benefit from data
flow analysis include program testing, validation, verification, parallelization and vectoriza-
tion. Classical data flow analyses include reaching definitions, available expressions and live

variables analyses [102].



A data flow analysis is primarily designed to gather information about the use and
definition of data in a program as well as the dependencies between the different sets of
data. To achieve this, a program is often seen as a graph, where nodes represent blocks of
the program and edges represent flows between those blocks. For example, the following
program computes the factorial of a number n:

def

F= [fac:=1]'; while [n > 1)? do ([fac := facxn)*;[n:=n —1]*)

This program can be represented by the graph of Figure 1.1, and can also be expressed by
the function flow = {(1,2),(2,3),(3,4),(4,2)}. Sets of equations or constraints are then

Figure 1.1: The flow graph of the factorial program.

constructed that relate the entry and exit information of each program node and among the
different nodes. The least solution of these equations represents the result of the analysis.
In the above example of the factorial program, one may construct a reaching definitions

analysis by defining the following set of equations [102]:

Rout(1) = (Rin(D\{(fac,)})U{(fac,1)}
Rout(2) = Rin(2)

Rout(3) = (Rin(3)\{(fac.)}) U{fac,3}
Rout(d) = (Rin(4)\{(n.)}) U{(n,4)}
Rin(2) = Rout(1) U Rout(4)

Rin(3) = Rout(2)

Rin(4) Rout(3)



Where [ is any label, I € {1,2,3,4}. Rout(l) here relates information at the exit point of a
node, [, in terms of the inputs to that node, and Rin(l) relates information about the entry
point of node, I, in terms of the outputs from that point. The restriction, Rin(I")\{(x,1)},
and the union, Rin(l") U {(z,l')}, refer to the change that occurs in the value of variable
x at program node I’, where the previous value of x was obtained at node I. On the other
hand, Rin(l) reflects the information collected from nodes whose outputs flow into the input
of node . Hence, Rout(l") is added to the value of Rin(l) whenever control flow is possible
from node I’ to node .

In a reaching definitions analysis, the information collected about a program point rep-
resents the assignments that can reach that point, i.e. assignments not overwritten by the
time the point is reached. Hence, solving the above equations will result in the least solution

of Figure 1.2 (the question mark ’?’ symbol denotes unknown value).

1| (n,7),(fac,?) ), (

2| (n,7),(n,4),(fac, 1), (fac,3) | (n,?),(n,4)

31 (n,7),(n,4),(fac,1),(fac,3) | (n,7),(n,4),(fac,3)
4| (n,?),(n,4),(fac,3) (n,4),(fac,3)

Figure 1.2: The solution of the reaching definitions analysis for the factorial program.

Data flow analysis is a mature research area, where frameworks have been developed to
classify and solve different classes of data flow problems. These problems can be described
using the formalisms of the different frameworks and a solution algorithm is then selected.
The earliest framework for data flow analysis can be ascribed to Kildall [84], who was also
the first to use semi-lattices in such analyses. A survey can be found in [88], which includes
the rapid, continuous, distributive, monotone and k-bound frameworks.

The most popular framework for data flow analysis is the monotone framework due to
[83]. In this framework, data flow problems are defined through lattices (either complete
or semi-lattices) of values with a meet (join) operator, often called the property space, and
a family of transfer functions defined over those lattices. To create an instance of the
framework, a (directed) flow graph is required, where the transfer functions are bound to
the graph nodes using a function map. The association of a function to a particular node
means that all the information gathered at the node is mapped to lattice values. This also
allows for data flow problems to be phrased as equations that encode the information at each

node in terms of the information at the predecessor (successor) nodes and the local transfer
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functions. The solution to a problem is then obtained by computing a fixed point (least or
greatest) of the equation system, where a lattice value is associated with each node of the
flow graph. An interesting treatment of the monotone framework for concurrent systems is
given in [48].

The only application of the data flow paradigm to the analysis of the m-calculus has
been given in [81], where the issue of causality among processes and true concurrency is
examined. However, as we are unaware of any security-related data flow analyses, we shall

not discuss this paradigm any further.

1.4.2 Control Flow Analysis

A control flow analysis is concerned with answering the following question: Given a particular
point in a program, what is the set of subprograms, functions, commands etc. that can
be reached from that point? In other words, a control flow analysis attempts to record
information about the different execution paths in the program. This information is then
used to conduct program optimisation and transformation as well as determine runtime
properties. Despite the fact that the early control flow analysis techniques were developed
mainly for the functional programming paradigm, control flow analyses were later utilised
in other paradigms as well, like the object-oriented, concurrent and logic programming
paradigms.

Often, a control flow analysis is expressed as a constraint-based analysis and its solution
relates the different points of control flow of the basic program blocks. Taking a functional
program as an example, the set of constraints may be classified into three main classes,
assuming a finite set of program labels. The first two classes relate function abstractions and
variable values to their corresponding labels, respectively. The third class expresses which
formal parameters of functions are bound to which actual parameters in function applications
and whether the results returned from functions can be returned by the applications in which
they appear.

For example, consider the following functional program [102]:
[fn x => [x]'? [fn y => [y]’]*)°

If we assume functions C(I) and label(x), where the former indicates the set of expressions
that [ may evaluate to, and the latter the values that variable x may be bound to, then the

following classes of constraints may be stated for the above program. The first class relates
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values of function abstractions to their labels:
{fn x => [x]'} C C(2)
{tn y => [y°} CC4)
The second class of constraints relates values of variables to their labels:
label(z) C C(1)
label(y) € C(3)

The final class expresses information about function applications, where the following con-
ditional constraints are introduced (the inclusion of functions fn x => x and fn y => y

provides for the possibility that both functions may be applied):

{fn x => x]'} CC(2) = C(4)C label(x)
{fo x > [x]'} CC(2) = C(1)CC(5)
{fo y > [y]’} CC(2) = C(4) Clabel(y)
{foy >’} CC@2) = CB)cCB)

The least solution to the above equations is given as follows:

C(1) = {fny = [y*}

C(2) = {fnx = [x'}

cE) = {1}

C(4) = {fny = [y}

C(B) = {fny=[y°}
label(x) = {fny =>[y]’}
label(y) = {}

This solution reveals that the function, (fn y => y), is never applied in the program (since
we have that label(y)={}), and the program may only evaluate to the function, fn y =>
y, (since we have that C(5) = {fn y => [y]?}). Hence, the last two conditional constraints
have false left sides leading to false right sides.

To achieve a more precise control flow analysis, the concept of k-CF A analysis (CFA
stands for Control Flow Analysis) was developed in [119], where k stands for the level of
context information taken into account in the analysis. Hence, a 0-C F'A denotes a context-
insensitive or monovariant analysis. On the other hand, when k > 0, the analysis is described

as context-sensitive or polyvariant. The presence of dynamic context information allows for
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the different instances of variables and program blocks to be distinguished and therefore,
arrive at more precise results for the analysis. Several variations of the k-C'F A analysis exist,
for example the uniform k-CF A, polynomial k-CF'A and the Cartesian product algorithm.

Control flow analysis has been combined with other approaches, like data flow analy-
sis, abstract interpretation and flow graphs, to achieve better quality, understanding and
presentation of the final results. Data flow information may be included in the final set of
results obtained from the control flow analysis, which then results in better quality of control
flow information. The use of abstract interpretation techniques is necessary for tuning the
complexity of the analysis versus its precision. As with the data flow analysis, flow graphs
are a handy tool to visualise results and gain better understanding of the flow of control

among different program blocks.

1.4.3 Abstract Interpretation

An abstract interpretation allows for programs to be analysed by running their specifications
over finite approximated semantic domains that are less precise than the concrete semantic
domains, but that are characterised as being safe computable abstractions of the concrete
domains. In fact, the original work by [45] has developed from being a specific framework
for imperative languages to a general framework offering solutions on the design of static
analyses for different programming paradigms. It even became closely linked with other
approaches like data flow analysis, control flow analysis and type systems.

The first step in designing an abstract interpretation is to determine whether the stan-
dard semantics of the language is sufficiently rich to be able to capture the property under
consideration. If not, a non-standard semantics is designed as an extension or modification
of the standard semantics to capture the property of interest. The resulting non-standard
semantics is sometimes proven to be correct with respect to the standard semantics. Differ-
ent approaches exist for proving the existence of a correctness relation. The approach we
follow in our framework is to show that for all the non-standard semantics elements, the
standard semantic component can be extracted from these elements.

More formally, assume P is a program, (P|) = v € V is the standard semantic evaluation,
and [P] =1 € L is the non-standard semantic evaluation, then the correctness relation R is

formalised as a compositional function:

vP i R([P])=(P)

Vvl,vg € V,ll,lg el : R(ll) =v; A R(lg) =V = R(ll *lz) = V1 * Vg

Where, %, is a composition operation that constructs the complex meaning, [y % I, from
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the primitive meanings [y and l,. Often proving the existence of R is largely dependent
on the amount of information about the standard semantics retained in the non-standard
semantics.

Since the concrete semantics (standard or non-standard) may operate over infinite do-
mains, the computation of this semantics is not guaranteed to terminate, even with the use
of least fixed points. Therefore, a suitable approximation (abstraction) is required to keep
the semantic domain finite. This abstraction is shown to be safe with respect to the concrete
semantics by proving that a safety relation is preserved across the abstract semantic values.
This relation expresses the fact that every concrete computation maps to a corresponding
abstract computation, although the latter of course, is less precise.

Hence, if we assume that, [P]* = I¥ € L, is the abstract semantics function, then the

safety requirement can be formulated as a relation, S, defined as follows:

VP[Pl =1,[P]f =1} : (I,LI"YeS

Vi loe LI e Lf (1,1 A (1) €S = (hxly,Exll)es

The definition of the safety relation .S is highly dependent on the semantic domains and the
choice of the abstraction adopted.

In the theory of abstract interpretation, the set of abstract semantics values, Lf, is
interesting because it is augmented with some ordering relation, C, which results in L*
having some structure, like a complete lattice. Moreover, we can impose the following

implications between the complete lattice, L, and the safety relation, S:

VieLthelt:(1,YesS A llcly = (LIh)eS

VieLlFeLl* LFCL!:(,I))es = (,IMNL%es

The first implication states that if an abstract value, l{, is safe, then a larger value, 127 will
also be safe and, therefore, the smaller value, lg, would constitute a more precise or better
solution. The second implication states that for a set of safe abstract values, their greatest
lower bound is also a safe value. In other words, for a concrete semantic value, [, there is
always a smallest abstract value, [ 1 L’*, among a sub-lattice, L'® C L¥, of safe values, that
is itself safe with respect to [. Practically, this has the effect that an abstract interpretation
needs to be performed only once for a program to obtain the best solution.

An alternative approach to the safety proof involves the introduction of a pair of ab-
straction/concretisation relations that are shown to form a Galois connection between the
concrete and abstract domains. Hence, a tuple, (L, a, v, L¥), is a Galois connection between

the two complete lattices, (L,C, M, U, L, T), and, (Lf,C,M, U, L, T), where a : L — L and
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v : L¥ — L are monotone functions, if the tuple satisfies the requirement that:

I

Al

Yo«

aoy L Amm

Which express the safety of the abstract semantics at the cost of losing precision. On certain
occasions, widening and narrowing techniques may also be used in combination with Galois
connections to further approximate fixed points.

The main application of abstract analysers has been in combination with language com-
pilers that could be used in program optimisation and to prove that the program is safe with
respect to a certain security policy. Examples of popular non-security-related implementa-
tions of abstract interpretation-based analyses include the strictness analysis, sharing analy-
sis, the ground substitutions analysis in logic programs and approximations of n-dimensional

vector spaces over integers and rational numbers.

1.4.4 Type Systems

Type systems are widely used in programming languages to avoid unwanted behaviour of
their programs during runtime. Some of this behaviour could be crucial to security violations,
like private information leaks and restricted address space accesses. In general, a type is
regarded as holding information that is true about the program entity it types. Moreover, if
one thinks of a type as being a collection of values, then a subset of that collection constitutes
a subtype. Subtyping expresses an ordering relation among the different types. It also may
be thought of as giving more refined information about the subtyped entity.

One may also define a principal type as the most general type of an expression. For
example, a lambda abstraction, Ax.z, has the principal type, a — a, where a could be
instantiated with any type. Principal types of language expressions are often computed
from the types of their subexpressions using Robinson’s unification algorithms [113].

A typing environment is used to map the different program entities (statements, ex-
pressions, constants, variables etc.) to their types. Such environment may be constructed

manually according to a set of axioms and rules. Consider the following imperative language:

S,81,8y = [r:=a]
| [skip]'
| 51552
| if [b)' then S; else S
| while [b]' do S
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Where 1,1’ € {1,2,3,4}. Then each statement may be considered as typed by the type
¥ — 3, where, X, is the type of the state of the program. This type could denote the result
of a reaching definitions analysis, RD. Based on this interpretation of X, one may introduce

the axioms and rules of Figure 1.3 [102].

(assign) [z :=a]': RD — ((RD\{(z,1")}) U{(z,1)})
(skip) [skip)' : RD — RD
Sl : RDl — RD2 S2 : RDQ — RD3
(seq)
Sl; 52 :RD; — RDs
(f) Sl : RD1 — RD2 SQ : RD1 — RDQ
i
if [b]' then S; else Sy : RD; — RD,
S:RD — RD
(while)
while [b)' do S:RD — RD
S : RDs — RD3
(sub) if RDl Q RD2 and RD3 Q RD4
S:RDy — RD,

Figure 1.3: Types for the reaching definitions analysis.

These axioms and rules are explained as follows. Axiom (assign) states that any previous
assignments carried out on the variable, x, are removed from the final state RD, and x is
declared as having the value assigned at current statement marked I. Axiom (skip) does not
alter RD and rule seq composes the type of a sequential statement, Sy; So, from the types